×

Usamos cookies para ayudar a mejorar LingQ. Al visitar este sitio, aceptas nuestras politicas de cookie.


image

TED-Ed, The high-stakes race to make quantum computers work - Chiara Decaroli

The high-stakes race to make quantum computers work - Chiara Decaroli

The contents of this metal cylinder could either revolutionize technology

or be completely useless—

it all depends on whether we can harness the strange physics of matter

at very, very small scales.

To have even a chance of doing so,

we have to control the environment precisely:

the thick tabletop and legs guard against vibrations from footsteps,

nearby elevators, and opening or closing doors.

The cylinder is a vacuum chamber,

devoid of all the gases in air.

Inside the vacuum chamber is a smaller,

extremely cold compartment, reachable by tiny laser beams.

Inside are ultra-sensitive particles that make up a quantum computer.

So what makes these particles worth the effort?

In theory, quantum computers could outstrip the computational limits

of classical computers.

Classical computers process data in the form of bits.

Each bit can switch between two states labeled zero and one.

A quantum computer uses something called a qubit,

which can switch between zero, one, and what's called a superposition.

While the qubit is in its superposition,

it has a lot more information than one or zero.

You can think of these positions as points on a sphere:

the north and south poles of the sphere represent one and zero.

A bit can only switch between these two poles,

but when a qubit is in its superposition,

it can be at any point on the sphere.

We can't locate it exactly—

the moment we read it, the qubit resolves into a zero or a one.

But even though we can't observe the qubit in its superposition,

we can manipulate it to perform particular operations while in this state.

So as a problem grows more complicated,

a classical computer needs correspondingly more bits to solve it,

while a quantum computer will theoretically be able to handle

more and more complicated problems

without requiring as many more qubits as a classical computer would need bits.

The unique properties of quantum computers

result from the behavior of atomic and subatomic particles.

These particles have quantum states,

which correspond to the state of the qubit.

Quantum states are incredibly fragile,

easily destroyed by temperature and pressure fluctuations,

stray electromagnetic fields,

and collisions with nearby particles.

That's why quantum computers need such an elaborate set up.

It's also why, for now,

the power of quantum computers remains largely theoretical.

So far, we can only control a few qubits in the same place at the same time.

There are two key components involved

in managing these fickle quantum states effectively:

the types of particles a quantum computer uses,

and how it manipulates those particles.

For now, there are two leading approaches:

trapped ions and superconducting qubits.

A trapped ion quantum computer uses ions as its particles

and manipulates them with lasers.

The ions are housed in a trap made of electrical fields.

Inputs from the lasers tell the ions what operation to make

by causing the qubit state to rotate on the sphere.

To use a simplified example,

the lasers could input the question:

what are the prime factors of 15?

In response, the ions may release photons—

the state of the qubit determines whether the ion emits photons

and how many photons it emits.

An imaging system collects these photons and processes them to reveal the answer:

3 and 5.

Superconducting qubit quantum computers do the same thing in a different way:

using a chip with electrical circuits instead of an ion trap.

The states of each electrical circuit translate to the state of the qubit.

They can be manipulated with electrical inputs in the form of microwaves.

So: the qubits come from either ions or electrical circuits,

acted on by either lasers or microwaves.

Each approach has advantages and disadvantages.

Ions can be manipulated very precisely,

and they last a long time,

but as more ions are added to a trap,

it becomes increasingly difficult to control each with precision.

We can't currently contain enough ions in a trap to make advanced computations,

but one possible solution might be to connect many smaller traps

that communicate with each other via photons

rather than trying to create one big trap.

Superconducting circuits, meanwhile, make operations much faster than trapped ions,

and it's easier to scale up the number of circuits in a computer

than the number of ions.

But the circuits are also more fragile,

and have a shorter overall lifespan.

And as quantum computers advance,

they will still be subject to the environmental constraints

needed to preserve quantum states.

But in spite of all these obstacles,

we've already succeeded at making computations

in a realm we can't enter or even observe.

The high-stakes race to make quantum computers work - Chiara Decaroli Der Wettlauf um das Funktionieren von Quantencomputern steht auf dem Spiel - Chiara Decaroli La carrera por hacer funcionar los ordenadores cuánticos - Chiara Decaroli La corsa alla sicurezza per far funzionare i computer quantistici - Chiara Decaroli 量子コンピュータの実現に向けた賞金レース - キアラ・デカローリ Didelių statymų lenktynės siekiant sukurti kvantinius kompiuterius - Chiara Decaroli Wyścig o wysoką stawkę, aby komputery kwantowe działały - Chiara Decaroli A corrida de alto risco para fazer funcionar os computadores quânticos - Chiara Decaroli Гонка с высокими ставками за создание квантовых компьютеров - Кьяра Декароли Det står mycket på spel för att få kvantdatorer att fungera - Chiara Decaroli Kuantum bilgisayarları çalıştırmak için yüksek riskli yarış - Chiara Decaroli Гонка з високими ставками, щоб змусити квантові комп’ютери працювати – К’яра Декаролі 让量子计算机发挥作用的高风险竞赛——Chiara Decaroli 讓量子計算機發揮作用的高風險競賽——Chiara Decaroli

The contents of this metal cylinder could either revolutionize technology Вміст цього металевого циліндра може зробити революцію в технології

or be completely useless—

it all depends on whether we can harness the strange physics of matter

at very, very small scales.

To have even a chance of doing so,

we have to control the environment precisely:

the thick tabletop and legs guard against vibrations from footsteps, товста стільниця і ніжки захищають від вібрації від кроків,

nearby elevators, and opening or closing doors. ліфти поблизу, двері, що відкриваються чи зачиняються.

The cylinder is a vacuum chamber,

devoid of all the gases in air.

Inside the vacuum chamber is a smaller, Усередині вакуумної камери є менший,

extremely cold compartment, reachable by tiny laser beams. надзвичайно холодний відсік, доступний крихітними лазерними променями.

Inside are ultra-sensitive particles that make up a quantum computer.

So what makes these particles worth the effort? Отже, чому ці частинки варті зусиль?

In theory, quantum computers could outstrip the computational limits Теоретично квантові комп’ютери можуть вийти за межі обчислень

of classical computers.

Classical computers process data in the form of bits.

Each bit can switch between two states labeled zero and one.

A quantum computer uses something called a qubit, Een kwantumcomputer gebruikt iets dat een qubit wordt genoemd, Квантовий комп’ютер використовує те, що називається кубітом,

which can switch between zero, one, and what's called a superposition.

While the qubit is in its superposition,

it has a lot more information than one or zero.

You can think of these positions as points on a sphere:

the north and south poles of the sphere represent one and zero.

A bit can only switch between these two poles,

but when a qubit is in its superposition,

it can be at any point on the sphere.

We can't locate it exactly—

the moment we read it, the qubit resolves into a zero or a one. у той момент, коли ми його читаємо, кубіт перетворюється на нуль або одиницю.

But even though we can't observe the qubit in its superposition,

we can manipulate it to perform particular operations while in this state.

So as a problem grows more complicated,

a classical computer needs correspondingly more bits to solve it, класичному комп’ютеру потрібно відповідно більше бітів для її вирішення,

while a quantum computer will theoretically be able to handle

more and more complicated problems

without requiring as many more qubits as a classical computer would need bits.

The unique properties of quantum computers

result from the behavior of atomic and subatomic particles.

These particles have quantum states,

which correspond to the state of the qubit. які відповідають стану кубіта.

Quantum states are incredibly fragile,

easily destroyed by temperature and pressure fluctuations, легко руйнується при перепадах температури і тиску,

stray electromagnetic fields, розсіяні електромагнітні поля,

and collisions with nearby particles.

That's why quantum computers need such an elaborate set up. Ось чому квантові комп’ютери потребують такого складного налаштування.

It's also why, for now,

the power of quantum computers remains largely theoretical.

So far, we can only control a few qubits in the same place at the same time.

There are two key components involved

in managing these fickle quantum states effectively:

the types of particles a quantum computer uses,

and how it manipulates those particles.

For now, there are two leading approaches:

trapped ions and superconducting qubits.

A trapped ion quantum computer uses ions as its particles

and manipulates them with lasers.

The ions are housed in a trap made of electrical fields. Іони знаходяться в пастці, створеній електричними полями.

Inputs from the lasers tell the ions what operation to make

by causing the qubit state to rotate on the sphere.

To use a simplified example,

the lasers could input the question:

what are the prime factors of 15? які прості множники числа 15?

In response, the ions may release photons—

the state of the qubit determines whether the ion emits photons стан кубіта визначає, чи випромінює іон фотони

and how many photons it emits.

An imaging system collects these photons and processes them to reveal the answer:

3 and 5.

Superconducting qubit quantum computers do the same thing in a different way: Надпровідні кубітні квантові комп’ютери роблять те саме іншим способом:

using a chip with electrical circuits instead of an ion trap.

The states of each electrical circuit translate to the state of the qubit.

They can be manipulated with electrical inputs in the form of microwaves.

So: the qubits come from either ions or electrical circuits,

acted on by either lasers or microwaves.

Each approach has advantages and disadvantages.

Ions can be manipulated very precisely,

and they last a long time,

but as more ions are added to a trap,

it becomes increasingly difficult to control each with precision.

We can't currently contain enough ions in a trap to make advanced computations,

but one possible solution might be to connect many smaller traps

that communicate with each other via photons

rather than trying to create one big trap.

Superconducting circuits, meanwhile, make operations much faster than trapped ions,

and it's easier to scale up the number of circuits in a computer

than the number of ions.

But the circuits are also more fragile,

and have a shorter overall lifespan. і мають менший загальний термін служби.

And as quantum computers advance,

they will still be subject to the environmental constraints вони все ще підлягатимуть екологічним обмеженням

needed to preserve quantum states.

But in spite of all these obstacles,

we've already succeeded at making computations ми вже досягли успіху в обчисленнях

in a realm we can't enter or even observe.