×

Usamos cookies para ayudar a mejorar LingQ. Al visitar este sitio, aceptas nuestras politicas de cookie.


image

Kurzgesagt (In a Nutshell), Genetic Engineering Will Change Everything Forever – CRISPR

Genetic Engineering Will Change Everything Forever – CRISPR

Imagine you were alive back in the 1980's and were told

the computers would soon take over everything. [00:06.984] That billions of people would be connected via a kind of web.

That you would own a handheld device

orders of magnitude more powerful than supercomputers.

It would seem absurd but then all of it happened.

Science fiction became our reality that we don't even think about it

We're at a similar point today with genetic engineering.

So let's talk about it.

Where it came from? What we're doing right now?

And about a recent breakthrough that will change how we live

and what we perceive as "normal" forever.

Humans have been engineering life for thousands of years. Through selective breeding

we strengthened useful traits and plants and animals.

We became very good at this but never truly understood how it works.

Until we discovered the code of life: deoxyribonucleic acid, DNA,

a complex molecule the guide of the growth, development function

and reproduction of everything alive.

Information is encoded in the structure of the molecule.

Four nucleotides are paired and make up a code that carries instructions.

Change the instructions and you change the being carrying it.

As soon as DNA was discovered people try to tinker with it.

In the 1960's, scientists bombarded plants with radiation

to cause random mutations in the genetic code.

The idea was to get a useful plant variation by pure chance.

Sometimes, it actually worked too.

In the 70's, scientists inserted DNA snippets into bacteria, plants and animals

to study and modify them for research, medicine, agriculture and for fun.

The earliest genetically modified animal was born in 1974,

making mice a standard tool for research, saving millions of lives.

In the 80's, we got commercial.

first patent was given for a microbe engineered to absorb oil today we

produce many chemicals by means of engineered life like life-saving

clotting factors growth hormones and insulin, all things we had to harvest

from the organs of animals before that. The first food modified in the lab went

on sale in 1994: the Flavr Savr tomato, a tomato given a much longer shelf life

where an extra gene that suppresses the build-up of a rotting enzyme. But GM food

and the controversy surrounding them deserve a video of their own.

In the 1990's there was also a brief foray into human engineering. To treat

maternal infertility, babies were made to carry genetic information from

three humans making them the first humans ever to have three genetic

parents. Today there are super muscled pigs, fast-growing salmon, featherless

chickens and see-through frogs. On the fun side, we made things glow in the dark

fluorescent zebrafish are available for as little as ten dollars.

All of this is already very impressive but until recently,

gene editing was extremely expensive, complicated and took a long time to do.

This has now changed with a revolutionary new technology now

entering the stage: CRISPR. Overnight, the costs of engineering have shrunk by 99%

Instead of a year.

it takes a few weeks to conduct experiments and basically everybody with

a lab can do it. It's hard to get across how big a technical revolution CRISPR is.

It literally has the potential to change humanity forever.

Why did this sudden revolution happen and how does it work?

Bacteria and viruses have been fighting since the dawn of life.

So-called bacteriophages, or phages, hunt bacteria. In the ocean, phages kill 40% of them every single day.

Phages do this by inserting their own genetic code into the bacteria and taking them over to use them as factories.

The bacteria try to resist, but fail most of the time because their protection tools are too weak.

But sometimes, bacteria survive an attack. Only if they do so can they activate

their most effective antivirus system. They save a part of the virus DNA in

their own genetic code in a DNA archive called CRISPR.

Here it's stored safely until it's needed.

When the virus attacks again, the bacterium quickly makes an RNA copy

from the DNA archive and arms a secret weapon, a protein called Cas9.

The protein now scans the bacterium's inside for signs of the virus invader by

comparing every bit of DNA it finds to the sample from the archive.

When it finds a 100-percent perfect match

it's activated and cuts out the virus DNA making it useless, protecting the

bacterium against the attack.

What's special is that Cas9 is very precise, almost like a DNA surgeon.

The revolution began when scientists figured out that the CRISPR system is programmable.

You can just give it a copy of DNA you want to modify and put the

system into a living cell. If the old techniques of genetic manipulation were

like a map, CRISPR is like a GPS system. Aside from being precise cheap and easy,

CRISPR offers the ability to edit life cells to switch genes on and

off and target and study particular DNA sequences.

It also works for every type of cell: microorganisms, plants

animals or humans. But despite the revolution CRISPR is for science,

it's still just a first generation tool. More precise tools are already being

created and used as we speak.

In 2015, scientists use CRISPR to cut the HIV virus out of living cells from patients

in the lab, proving that it was possible. Only about a year later they carried out

a larger scale project with rats that had the HIV virus in basically all of

their body cells. By simply injecting CRISPR into the rats tails, they were

able to remove more than 50% of the virus from cells all over the body.

In a few decades, a CRISPR therapy might cure HIV and other retroviruses.

Viruses that hide inside human DNA like herpes could be eradicated this way.

CRISPR could also defeat one of our worst enemies: cancer. Cancer occurs when

cells refused to die and keep multiplying while concealing themselves

from the immune system. CRISPR gives us the means to edit your immune cells and

make them better cancer hunters. Getting rid of cancer might eventually mean

getting just a couple of injections of a few thousand of your own cells that have

been engineered in the lab to heal you for good.

The first clinical trial for a CRISPR cancer treatment on human patients was

approved in early 2016 in the US. Not even a month later, Chinese

scientists announced that they would treat lung cancer patients with immune

cells modified by CRISPR in August 2016. Things are picking up pace quickly.

And then there are genetic diseases. There are thousands of them and they range,

from merely annoying to deadly or entail decades of suffering. With a powerful

tool like CRISPR, we may be able to end this. Over 3,000 genetic diseases are

caused by a single incorrect letter in your DNA.

We are already building a modified version of Cas9 that is made to

change just a single letter, fixing the disease in the cell. In a decade or two

we could possibly cure thousands of diseases forever. But all of these

medical applications have one thing in common: they are limited to the

individual and die with them, except if you use them on reproductive cells or

very early embryos. But CRISPR can and probably will be used for much more:

the creation of modified humans, designer babies and will mean gradual but

irreversible changes to the human gene pool.

The means to edit the genome of a

human embryo already exists, though the technology is still in its early stages.

But it has already been attempted twice: in 2015 and 2016, Chinese scientists

experimented with human embryos and were partially successful on their second

attempt. They showed the enormous challenges we still face in gene editing

embryos but also that scientists are working on solving them.

This is like the computer in the seventies: there will be better computers.

Regardless of your personal take on genetic engineering, it will affect you.

Modified humans could alter the genome of our entire species because their

engineered traits will be passed on to that children and could spread over

generations slowly modifying the whole gene pool of humanity. It will start

slowly: the first designer babies will not be overly designed, it's most likely

that they will be created to eliminate deadly genetic disease running a family.

As the technology progresses and gets more refined, more and more people may argue

that not using genetic modification is unethical, because it condemns children

to preventable suffering and death and denies them to cure. But as soon as the

first engineered kid is born, a door is opened that can't be closed anymore.

Early on, vanity traits will mostly be left alone, but as genetic modification

becomes more accepted and our knowledge of our genetic code enhances,

the temptation will grow.

If you make your offspring immune to Alzheimer, why not also

give them an enhanced metabolism?

Why not throw in perfect eyesight? How about height or muscular structure?

Full hair? How about giving your child the gift of extraordinary intelligence? Huge changes

are made as a result of the personal decisions of millions of individuals

that accumulate. This is a slippery slope. Modified humans could become the new

standard, but as engineering becomes more normal and our knowledge improves, we

could solve the single biggest mortality risk factor: aging. Two-thirds of the

150,000 people who die today will die of age-related causes. Currently we think

aging is caused by the accumulation of damage to ourselves, like DNA breaks and

the system's responsible for fixing those wearing off over time. But there

are also genes that directly affect aging. A combination of genetic

engineering and other therapy could stop or slow down aging, maybe even reverse it.

We know from nature that there are animals immune to aging. Maybe we could

even borrow a few genes for ourselves. Some scientists even think biological

aging could be something that eventually just stops being a thing. We would still

die at some point, but instead of doing so in hospitals at age 90

we might be able to spend a few thousand years with our loved ones. Research into

this is in its infancy, and many scientists are rightly skeptical about

the end of aging. The challenges are enormous, and maybe it is unachievable.

But it is conceivable that people alive today might be the first to profit from

effective anti aging therapy. All we might need is for someone to convince a

smart billionaire to make it their next problem to solve. On a bigger scale we

certainly could solve many problems by having a modified population. Engineered

humans might be better equipped to cope with high-energy food, eliminating many

diseases of civilization like obesity.

In possession of a modified immune system with a library of potential

threat, we might become immune to most diseases that haunt us today.

Even further into the future we could engineer humans to be equipped for

extended space travel and to cope with different conditions on other planet,

which would be extremely helpful in keeping us alive in our hostile universe.

Still a few major challenges await us. Some technological, some ethical.

Many of you watching will feel uncomfortable and fear that we will create a world in

which we will reject non-perfect humans and preselect features and qualities

based on our idea of what's healthy.

The thing is we are already living in this world. Tests for dozens of genetic

diseases or complications have become standard for pregnant women

in much of the world.

Often, the mere suspicion of a genetic defect can lead to the end of pregnancy.

Take Down Syndrome for example: one of the most common genetic defects.

In Europe, about ninety percent of all pregnancies where it's detected are

terminated. The decision to terminate pregnancy is incredibly personal, but

it's important to acknowledge the reality that we are preselecting humans

based on medical conditions. There is also no use in pretending this will

change, so we have to act carefully and respectfully as we advance the

technology and can make more and more selections. But none of this will happen

soon: as powerful as CRISPR is, and it is, it's not infallible yet. Wrong edit

still happen as well as unknown errors that could occur anywhere in the DNA and

might go unnoticed. The gene edit might achieve the desired result

disabling a disease, but also might accidentally trigger unwanted changes.

We just don't know enough yet about the complex interplay of our genes to avoid

unpredictable consequences. Working on accuracy and monitoring methods is a

major concern as the first human trials begin. And since we've discussed a

possible positive future, there are darker visions too.

Imagine what a state like North Korea could do if they embraced genetic

engineering. Could a state cement its rule forever by forcing gene editing on

their subjects? What would stop a totalitarian regime from engineering an

army of modified super soldiers? It is doable in theory? Scenarios like this one

are far far off into the future, if they ever become possible at all. But the

basic proof of concept for genetic engineering like this already exists

today. The technology really is that powerful. One of this might be a tempting

reason to ban genetic editing and related research that would certainly

be a mistake.

Banning human genetic engineering would only lead to the science wandering off

to a place with jurisdiction and rules that we are uncomfortable with. Only by

participating can we make sure that further research is guided by caution,

reason, oversight and transparency.

Do you feel uncomfortable now? Most of us have

something wrong with them. In the future that lies ahead of us, would we have been

allowed to exist?

The technology is certainly a bit scary, but we have a lot to gain and genetic

engineering might just be a step in the natural evolution of intelligent

species in the universe. We might end disease, we could extend our life

expectancy by centuries and travel to the stars. There's no need to think small

when it comes to this topic.

Whatever your opinion on genetic engineering, the future is approaching no

matter what. What has been insane science fiction is about to become our new

reality, a reality full of opportunities and challenges.

Videos like this would not be possible without your donations on patreon.com

If you want to support is expanding complicated stuff and maybe get your own

bird in return you can do so here. If you want to learn more about CRISPR, we put

the sources and further reading in the description. More videos about the whole

topic area will follow. If you want to be notified when it happens,

you can follow us here.

Subtitles by the Amara.org community

Genetic Engineering Will Change Everything Forever – CRISPR Die Gentechnik wird alles für immer verändern - CRISPR Genetic Engineering Will Change Everything Forever – CRISPR La ingeniería genética lo cambiará todo para siempre - CRISPR Le génie génétique va tout changer pour toujours - CRISPR L'ingegneria genetica cambierà tutto per sempre - CRISPR 遺伝子工学はすべてを永遠に変える - CRISPR Genetische manipulatie zal alles voor altijd veranderen - CRISPR Inżynieria genetyczna zmieni wszystko na zawsze - CRISPR A engenharia genética vai mudar tudo para sempre - CRISPR Генная инженерия изменит все навсегда - CRISPR Genetik Mühendisliği Her Şeyi Sonsuza Dek Değiştirecek - CRISPR Генна інженерія змінить все назавжди - CRISPR

Imagine you were alive back in the 1980's and were told Imagina que vivieras en los años 80 y te dijeran 1980'lerde yaşadığınızı ve size şöyle söylendiğini hayal edin

the computers would soon take over everything. [00:06.984] los ordenadores pronto se apoderarían de todo. [00:06.984] That billions of people would be connected via a kind of web. Que miles de millones de personas estarían conectadas a través de una especie de red.

That you would own a handheld device Que tuvieras un dispositivo portátil

orders of magnitude more powerful than supercomputers. orders of magnitude more powerful than supercomputers. órdenes de magnitud más potentes que los superordenadores.

It would seem absurd but then all of it happened. Parecería absurdo, pero entonces ocurrió todo aquello.

Science fiction became our reality that we don't even think about it La ciencia ficción se ha convertido en una realidad en la que ni siquiera pensamos

We're at a similar point today with genetic engineering.

So let's talk about it.

Where it came from? What we're doing right now? ¿De dónde viene? ¿Qué estamos haciendo ahora?

And about a recent breakthrough that will change how we live

and what we perceive as "normal" forever. y lo que percibimos como "normal" para siempre.

Humans have been engineering life for thousands of years. Through selective breeding

we strengthened useful traits and plants and animals. reforzamos los rasgos útiles y las plantas y animales.

We became very good at this but never truly understood how it works. Llegamos a ser muy buenos en esto, pero nunca entendimos realmente cómo funciona.

Until we discovered the code of life: deoxyribonucleic acid, DNA,

a complex molecule the guide of the growth, development function

and reproduction of everything alive.

Information is encoded in the structure of the molecule.

Four nucleotides are paired and make up a code that carries instructions. Cuatro nucleótidos están emparejados y forman un código que transporta instrucciones.

Change the instructions and you change the being carrying it. Cambia las instrucciones y cambiarás al ser que lo lleva.

As soon as DNA was discovered people try to tinker with it. En cuanto se descubrió el ADN, la gente intentó manipularlo.

In the 1960's, scientists bombarded plants with radiation

to cause random mutations in the genetic code.

The idea was to get a useful plant variation by pure chance. La idea era obtener una variación vegetal útil por pura casualidad.

Sometimes, it actually worked too. A veces, también funcionaba.

In the 70's, scientists inserted DNA snippets into bacteria, plants and animals En los años 70, los científicos insertaron fragmentos de ADN en bacterias, plantas y animales.

to study and modify them for research, medicine, agriculture and for fun.

The earliest genetically modified animal was born in 1974, El primer animal modificado genéticamente nació en 1974,

making mice a standard tool for research, saving millions of lives. haciendo de los ratones una herramienta estándar para la investigación, salvando millones de vidas.

In the 80's, we got commercial.

first patent was given for a microbe engineered to absorb oil today we primera patente de un microbio diseñado para absorber petróleo.

produce many chemicals by means of engineered life like life-saving producir muchos productos químicos mediante la ingeniería de la vida como

clotting factors growth hormones and insulin, all things we had to harvest factores de coagulación, hormonas de crecimiento e insulina.

from the organs of animals before that. The first food modified in the lab went de órganos de animales anteriores. El primer alimento modificado en el laboratorio fue

on sale in 1994: the Flavr Savr tomato, a tomato given a much longer shelf life a la venta en 1994: el tomate Flavr Savr, un tomate con una vida útil mucho más larga.

where an extra gene that suppresses the build-up of a rotting enzyme. But GM food donde un gen extra que suprime la acumulación de una enzima de putrefacción. Pero los alimentos transgénicos

and the controversy surrounding them deserve a video of their own. y la polémica que las rodea merecen un vídeo propio.

In the 1990's there was also a brief foray into human engineering. To treat En los años 90 también hubo una breve incursión en la ingeniería humana. Para tratar

maternal infertility, babies were made to carry genetic information from infertilidad materna, se hizo que los bebés llevaran información genética de

three humans making them the first humans ever to have three genetic tres humanos, lo que les convierte en los primeros humanos con tres

parents. Today there are super muscled pigs, fast-growing salmon, featherless padres. Hoy existen cerdos supermusculados, salmones de crecimiento rápido, plumas sin

chickens and see-through frogs. On the fun side, we made things glow in the dark pollos y ranas transparentes. Para divertirnos, hemos hecho cosas que brillan en la oscuridad.

fluorescent zebrafish are available for as little as ten dollars.

All of this is already very impressive but until recently,

gene editing was extremely expensive, complicated and took a long time to do. La edición genética era extremadamente cara, complicada y llevaba mucho tiempo.

This has now changed with a revolutionary new technology now Esto ha cambiado gracias a una nueva y revolucionaria tecnología.

entering the stage: CRISPR. Overnight, the costs of engineering have shrunk by 99% entrando en escena: CRISPR. De la noche a la mañana, los costes de ingeniería se han reducido un 99%

Instead of a year.

it takes a few weeks to conduct experiments and basically everybody with se tarda unas semanas en realizar experimentos y básicamente todo el mundo con

a lab can do it. It's hard to get across how big a technical revolution CRISPR is. un laboratorio puede hacerlo. Es difícil explicar la magnitud de la revolución técnica que supone CRISPR.

It literally has the potential to change humanity forever. Literalmente, tiene el potencial de cambiar la humanidad para siempre.

Why did this sudden revolution happen and how does it work? ¿Por qué se ha producido esta repentina revolución y cómo funciona?

Bacteria and viruses have been fighting since the dawn of life.

So-called bacteriophages, or phages, hunt bacteria. Los llamados bacteriófagos, o fagos, cazan bacterias. In the ocean, phages kill 40% of them every single day. En el océano, los fagos matan al 40% de ellos cada día.

Phages do this by inserting their own genetic code into Los fagos lo hacen insertando su propio código genético en the bacteria and taking them over to use them as factories. las bacterias y apoderarse de ellas para utilizarlas como fábricas.

The bacteria try to resist, but fail most of the time Las bacterias intentan resistirse, pero fracasan la mayoría de las veces because their protection tools are too weak.

But sometimes, bacteria survive an attack. Only if they do so can they activate Pero a veces, las bacterias sobreviven a un ataque. Sólo si lo hacen pueden activar

their most effective antivirus system. They save a part of the virus DNA in su sistema antivirus más eficaz. Guardan una parte del ADN del virus en

their own genetic code in a DNA archive called CRISPR. su propio código genético en un archivo de ADN llamado CRISPR.

Here it's stored safely until it's needed. Aquí se guarda de forma segura hasta que se necesita.

When the virus attacks again, the bacterium quickly makes an RNA copy Cuando el virus ataca de nuevo, la bacteria hace rápidamente una copia de ARN

from the DNA archive and arms a secret weapon, a protein called Cas9. del archivo de ADN y arma un arma secreta, una proteína llamada Cas9.

The protein now scans the bacterium's inside for signs of the virus invader by La proteína escanea ahora el interior de la bacteria en busca de signos del virus invasor mediante

comparing every bit of DNA it finds to the sample from the archive. comparando cada trozo de ADN que encuentra con la muestra del archivo.

When it finds a 100-percent perfect match Cuando encuentra una coincidencia 100 % perfecta

it's activated and cuts out the virus DNA making it useless, protecting the se activa y corta el ADN del virus haciéndolo inútil, protegiendo la

bacterium against the attack.

What's special is that Cas9 is very precise, almost like a DNA surgeon. Lo especial es que Cas9 es muy preciso, casi como un cirujano del ADN.

The revolution began when scientists figured out that the CRISPR system is programmable. La revolución comenzó cuando los científicos descubrieron que el sistema CRISPR es programable.

You can just give it a copy of DNA you want to modify and put the Puedes simplemente darle una copia del ADN que quieres modificar y poner el

system into a living cell. If the old techniques of genetic manipulation were

like a map, CRISPR is like a GPS system. Aside from being precise cheap and easy, como un mapa, CRISPR es como un sistema GPS. Además de ser preciso barato y fácil,

CRISPR offers the ability to edit life cells to switch genes on and

off and target and study particular DNA sequences. y estudiar determinadas secuencias de ADN.

It also works for every type of cell: microorganisms, plants

animals or humans. But despite the revolution CRISPR is for science, animales o humanos. Pero a pesar de la revolución CRISPR es para la ciencia,

it's still just a first generation tool. More precise tools are already being sigue siendo sólo una herramienta de primera generación. Ya existen herramientas más precisas

created and used as we speak. creados y utilizados mientras hablamos.

In 2015, scientists use CRISPR to cut the HIV virus out of living cells from patients

in the lab, proving that it was possible. Only about a year later they carried out

a larger scale project with rats that had the HIV virus in basically all of

their body cells. By simply injecting CRISPR into the rats tails, they were

able to remove more than 50% of the virus from cells all over the body.

In a few decades, a CRISPR therapy might cure HIV and other retroviruses.

Viruses that hide inside human DNA like herpes could be eradicated this way.

CRISPR could also defeat one of our worst enemies: cancer. Cancer occurs when

cells refused to die and keep multiplying while concealing themselves células se negaban a morir y seguían multiplicándose mientras se ocultaban

from the immune system. CRISPR gives us the means to edit your immune cells and del sistema inmunitario. CRISPR nos da los medios para editar sus células inmunes y

make them better cancer hunters. Getting rid of cancer might eventually mean

getting just a couple of injections of a few thousand of your own cells that have

been engineered in the lab to heal you for good.

The first clinical trial for a CRISPR cancer treatment on human patients was

approved in early 2016 in the US. Not even a month later, Chinese

scientists announced that they would treat lung cancer patients with immune

cells modified by CRISPR in August 2016. Things are picking up pace quickly.

And then there are genetic diseases. There are thousands of them and they range,

from merely annoying to deadly or entail decades of suffering. With a powerful

tool like CRISPR, we may be able to end this. Over 3,000 genetic diseases are

caused by a single incorrect letter in your DNA.

We are already building a modified version of Cas9 that is made to

change just a single letter, fixing the disease in the cell. In a decade or two

we could possibly cure thousands of diseases forever. But all of these

medical applications have one thing in common: they are limited to the

individual and die with them, except if you use them on reproductive cells or

very early embryos. But CRISPR can and probably will be used for much more:

the creation of modified humans, designer babies and will mean gradual but

irreversible changes to the human gene pool.

The means to edit the genome of a

human embryo already exists, though the technology is still in its early stages.

But it has already been attempted twice: in 2015 and 2016, Chinese scientists

experimented with human embryos and were partially successful on their second

attempt. They showed the enormous challenges we still face in gene editing

embryos but also that scientists are working on solving them.

This is like the computer in the seventies: there will be better computers.

Regardless of your personal take on genetic engineering, it will affect you.

Modified humans could alter the genome of our entire species because their

engineered traits will be passed on to that children and could spread over

generations slowly modifying the whole gene pool of humanity. It will start

slowly: the first designer babies will not be overly designed, it's most likely

that they will be created to eliminate deadly genetic disease running a family.

As the technology progresses and gets more refined, more and more people may argue

that not using genetic modification is unethical, because it condemns children

to preventable suffering and death and denies them to cure. But as soon as the

first engineered kid is born, a door is opened that can't be closed anymore.

Early on, vanity traits will mostly be left alone, but as genetic modification

becomes more accepted and our knowledge of our genetic code enhances,

the temptation will grow.

If you make your offspring immune to Alzheimer, why not also

give them an enhanced metabolism?

Why not throw in perfect eyesight? How about height or muscular structure?

Full hair? How about giving your child the gift of extraordinary intelligence? Huge changes

are made as a result of the personal decisions of millions of individuals

that accumulate. This is a slippery slope. Modified humans could become the new

standard, but as engineering becomes more normal and our knowledge improves, we

could solve the single biggest mortality risk factor: aging. Two-thirds of the

150,000 people who die today will die of age-related causes. Currently we think

aging is caused by the accumulation of damage to ourselves, like DNA breaks and

the system's responsible for fixing those wearing off over time. But there

are also genes that directly affect aging. A combination of genetic

engineering and other therapy could stop or slow down aging, maybe even reverse it.

We know from nature that there are animals immune to aging. Maybe we could

even borrow a few genes for ourselves. Some scientists even think biological

aging could be something that eventually just stops being a thing. We would still

die at some point, but instead of doing so in hospitals at age 90

we might be able to spend a few thousand years with our loved ones. Research into

this is in its infancy, and many scientists are rightly skeptical about

the end of aging. The challenges are enormous, and maybe it is unachievable.

But it is conceivable that people alive today might be the first to profit from

effective anti aging therapy. All we might need is for someone to convince a

smart billionaire to make it their next problem to solve. On a bigger scale we

certainly could solve many problems by having a modified population. Engineered

humans might be better equipped to cope with high-energy food, eliminating many

diseases of civilization like obesity.

In possession of a modified immune system with a library of potential

threat, we might become immune to most diseases that haunt us today.

Even further into the future we could engineer humans to be equipped for

extended space travel and to cope with different conditions on other planet,

which would be extremely helpful in keeping us alive in our hostile universe.

Still a few major challenges await us. Some technological, some ethical.

Many of you watching will feel uncomfortable and fear that we will create a world in

which we will reject non-perfect humans and preselect features and qualities

based on our idea of what's healthy.

The thing is we are already living in this world. Tests for dozens of genetic

diseases or complications have become standard for pregnant women

in much of the world.

Often, the mere suspicion of a genetic defect can lead to the end of pregnancy.

Take Down Syndrome for example: one of the most common genetic defects.

In Europe, about ninety percent of all pregnancies where it's detected are

terminated. The decision to terminate pregnancy is incredibly personal, but

it's important to acknowledge the reality that we are preselecting humans

based on medical conditions. There is also no use in pretending this will

change, so we have to act carefully and respectfully as we advance the

technology and can make more and more selections. But none of this will happen

soon: as powerful as CRISPR is, and it is, it's not infallible yet. Wrong edit

still happen as well as unknown errors that could occur anywhere in the DNA and

might go unnoticed. The gene edit might achieve the desired result

disabling a disease, but also might accidentally trigger unwanted changes.

We just don't know enough yet about the complex interplay of our genes to avoid

unpredictable consequences. Working on accuracy and monitoring methods is a

major concern as the first human trials begin. And since we've discussed a

possible positive future, there are darker visions too.

Imagine what a state like North Korea could do if they embraced genetic

engineering. Could a state cement its rule forever by forcing gene editing on

their subjects? What would stop a totalitarian regime from engineering an

army of modified super soldiers? It is doable in theory? Scenarios like this one

are far far off into the future, if they ever become possible at all. But the

basic proof of concept for genetic engineering like this already exists

today. The technology really is that powerful. One of this might be a tempting

reason to ban genetic editing and related research that would certainly

be a mistake.

Banning human genetic engineering would only lead to the science wandering off

to a place with jurisdiction and rules that we are uncomfortable with. Only by

participating can we make sure that further research is guided by caution,

reason, oversight and transparency.

Do you feel uncomfortable now? Most of us have

something wrong with them. In the future that lies ahead of us, would we have been

allowed to exist?

The technology is certainly a bit scary, but we have a lot to gain and genetic

engineering might just be a step in the natural evolution of intelligent

species in the universe. We might end disease, we could extend our life

expectancy by centuries and travel to the stars. There's no need to think small

when it comes to this topic.

Whatever your opinion on genetic engineering, the future is approaching no

matter what. What has been insane science fiction is about to become our new

reality, a reality full of opportunities and challenges.

Videos like this would not be possible without your donations on patreon.com

If you want to support is expanding complicated stuff and maybe get your own

bird in return you can do so here. If you want to learn more about CRISPR, we put

the sources and further reading in the description. More videos about the whole

topic area will follow. If you want to be notified when it happens,

you can follow us here.

Subtitles by the Amara.org community