×

We use cookies to help make LingQ better. By visiting the site, you agree to our cookie policy.


image

Kurzgesagt (In a Nutshell), What Happens If We Throw an Elephant From a Skyscraper? Life & Size 1

What Happens If We Throw an Elephant From a Skyscraper? Life & Size 1

Let's start this video by throwing a mouse, a dog, and an elephant

from a skyscraper onto something soft.

Let's say, a stack of mattresses.

The mouse lands and is stunned for a moment,

before it shakes itself off,

and walks away pretty annoyed,

because that's a very rude thing to do.

The dog breaks all of its bones

and dies in an unspectacular way,

and the elephant explodes into a red puddle of bones and insides

and has no chance to be annoyed.

Why does the mouse survive,

but the elephant and dog don't?

The answer is size.

Size is the most underappreciated regulator of living things.

Size determines everything about our biology,

how we are built, how we experience the world, how we live and die.

It does so because the physical laws are different for different sized animals.

Life spans seven orders of magnitude, from invisible bacteria to mites, ants,

mice, dogs, humans, elephants and, blue whales. Every size lives in its own

unique universe right next to each other, each with its own rules, upsides, and

downsides. We'll explore these different worlds in a series of videos. Let's get

back to the initial question: Why did our mouse survive the fall? Because of how

scaling size changes everything; a principle that we'll meet over and

over again. Very small things, for example, are practically immune to falling from

great heights because the smaller you are the less you care about the effect

of gravity. Imagine a theoretical spherical animal

the size of a marble. It has three features: its length, its surface area,

(which is covered in skin) and its volume, or all the stuff inside it like organs,

muscles, hopes and dreams. If we make it ten times longer, say the size of a

basketball, the rest of its features don't just grow ten times. Its skin will

grow 100 times and it's inside (so it's volume) grows by 1000 times. The volume

determines the weight, or more accurately, mass of the animal. The more mass you

have, the higher your kinetic energy before you hit the ground and the

stronger the impact shock. The more surface area in relation to your volume

or mass you have, the more the impact gets distributed and softened, and also

the more air resistance will slow you down. An elephant is so big that it has

extremely little surface area in ratio to its volume. So a lot of kinetic energy

gets distributed over a small space and the air doesn't slow it down much at all.

That's why it's completely destroyed in an impressive explosion of goo when it

hits the ground. The other extreme, insects, have a huge surface area in

relation to their tiny mass so you can literally throw an ant from an airplane

and it will not be seriously harmed. But while falling is irrelevant in the small

world there are other forces for the harmless for us but extremely dangerous

for small beings. Like surface tension which turns water into a potentially

deadly substance for insects. How does it work? Water has the tendency to stick to

itself; its molecules are attracted to each other through a force called

cohesion which creates a tension on its surface that you can imagine as a sort

of invisible skin. For us this skin is so weak that we don't even notice it

normally. If you get wet about 800 grams of water or about one percent of your

body weight sticks to you. A wet mouse has about 3 grams of water sticking to

it, which is more than 10% of its body weight. Imagine having eight full water

bottle sticking to you when you leave the shower. But for an insect the force

of water surface tension is so strong that getting wet is a question of life

and death. If we were to shrink you to the size of

an ant and you touch water it would be like you were reaching into glue. It

would quickly engulf you, its surface tension too hard for you to break and

you'd drown. So insects evolved to be water repellent. For one their exoskeleton is

covered with a thin layer of wax just like a car. This makes their surface at

least partly water repellent because it can't stick to it very well. Many insects

are also covered with tiny hairs that serve as a barrier. They vastly increase

their surface area and prevent the droplets from touching their exoskeleton

and make it easier to get rid of droplets. To make use of surface tension

evolution cracked nanotechnology billions of years before us. Some insects

have evolved a surface covered by a short and extremely dense coat of water

repelling hair. Some have more than a million hairs per square millimeter when

the insect dives under water air stays inside their fur and forms a coat of air.

Water can't enter it because their hairs are too tiny to break its surface tension.

But it gets even better, as the oxygen of the air bubble runs out, new oxygen

diffuses into the bubble from the water around, it while the carbon dioxide

diffuses outwards into the water. And so the insect carries its own outside lung

around and can basically breathe underwater thanks to surface tension.

This is the same principle that enables pond skaters to walk on water by the way,

tiny anti-water hairs. The smaller you get the weirder the environment becomes. At

some point even air becomes more and more solid. Let's now zoom down to the

smallest insects known, about half the size of a grain of salt,

only 0.15 millimeters long: the Fairy Fly. They live in a world even weirder than

another insects. For them air itself is like thin jello, a syrup-like mass

surrounding them at all times. Movement through it is not easy. Flying

on this level is not like elegant gliding; they have to kind of grab and

hold onto air. So their wings look like big hairy arms rather than proper insect

wings. They literally swim through the air, like a tiny gross alien through

syrup. Things only become stranger from here on

as we explore more diversity of different sizes. The physical rules are

so different for each size that evolution had to engineer around them

over and over as life grew in size in the last billion years. So why are there

no ants the size of horses? Why are no elephants the size of amoeba? Why?

We'll discuss this in the next part.

We have a monthly newsletter now, sign up if

you don't want to miss new videos and for bonus videos.

What Happens If We Throw an Elephant From a Skyscraper? Life & Size 1 Was passiert, wenn man einen Elefanten von einem Wolkenkratzer wirft? Leben & Größe 1 ¿Qué pasa si tiramos un elefante desde un rascacielos? Vida y tamaño 1 Que se passe-t-il si l'on jette un éléphant du haut d'un gratte-ciel ? Vie et taille 1 Cosa succede se lanciamo un elefante da un grattacielo? Vita e dimensioni 1 超高層ビルから象を投げたらどうなる?ライフ&サイズ1 O que acontece se atirarmos um elefante de um arranha-céus? Vida e tamanho 1 Что произойдет, если сбросить слона с небоскреба? Жизнь и размер 1 Bir Fili Gökdelenden Atarsak Ne Olur? Yaşam ve Boyut 1 Що буде, якщо скинути слона з хмарочоса? Life & Size 1 如果我们从摩天大楼扔下大象会发生什么?寿命和尺寸 1 如果我們從摩天大樓扔下大象會發生什麼?壽命和尺寸 1

Let's start this video by throwing a mouse, a dog, and an elephant

from a skyscraper onto something soft. d'un gratte-ciel sur quelque chose de mou.

Let's say, a stack of mattresses. Disons une pile de matelas.

The mouse lands and is stunned for a moment, La souris atterrit et reste stupéfaite pendant un moment,

before it shakes itself off, antes de que se sacuda, avant qu'il ne se secoue, пока не стряхнуло с себя,

and walks away pretty annoyed, y se marcha bastante molesto,

because that's a very rude thing to do. porque es de muy mala educación.

The dog breaks all of its bones El perro se rompe todos los huesos Le chien se casse tous les os

and dies in an unspectacular way, y muere de forma poco espectacular, et meurt d'une manière peu spectaculaire,

and the elephant explodes into a red puddle of bones and insides et l'éléphant explose en une flaque rouge d'os et d'entrailles

and has no chance to be annoyed.

Why does the mouse survive,

but the elephant and dog don't?

The answer is size.

Size is the most underappreciated regulator of living things. El tamaño es el regulador menos apreciado de los seres vivos. La taille est le régulateur le plus sous-estimé des êtres vivants.

Size determines everything about our biology,

how we are built, how we experience the world, how we live and die.

It does so because the physical laws are different for different sized animals.

Life spans seven orders of magnitude, from invisible bacteria to mites, ants, La vida abarca siete órdenes de magnitud, desde bacterias invisibles hasta ácaros y hormigas, La vie s'étend sur sept ordres de grandeur, des bactéries invisibles aux acariens, en passant par les fourmis, Жизнь охватывает семь порядков - от невидимых бактерий до клещей, муравьев,

mice, dogs, humans, elephants and, blue whales. Every size lives in its own мышей, собак, людей, слонов и синих китов. Каждый размер живет в своем

unique universe right next to each other, each with its own rules, upsides, and universo único uno al lado del otro, cada uno con sus propias reglas, ventajas y desventajas. univers unique juste à côté l'un de l'autre, chacun avec ses propres règles, avantages et inconvénients.

downsides. We'll explore these different worlds in a series of videos. Let's get

back to the initial question: Why did our mouse survive the fall? Because of how

scaling size changes everything; a principle that we'll meet over and la taille de l'échelle change tout ; un principe que nous rencontrerons à plusieurs reprises.

over again. Very small things, for example, are practically immune to falling from à plusieurs reprises. Les très petits objets, par exemple, sont pratiquement à l'abri des chutes de pierres.

great heights because the smaller you are the less you care about the effect plus on est petit, moins on se préoccupe de l'effet que cela peut avoir sur l'environnement.

of gravity. Imagine a theoretical spherical animal

the size of a marble. It has three features: its length, its surface area, la taille d'une bille. Elle présente trois caractéristiques : sa longueur, sa surface,

(which is covered in skin) and its volume, or all the stuff inside it like organs,

muscles, hopes and dreams. If we make it ten times longer, say the size of a Muskeln, Hoffnungen und Träume. Wenn wir ihn zehnmal so lang machen, sagen wir in der Größe eines des muscles, des espoirs et des rêves. Si nous le rendons dix fois plus long, disons de la taille d'un

basketball, the rest of its features don't just grow ten times. Its skin will Basketball, der Rest seiner Eigenschaften wächst nicht einfach zehnmal. Seine Haut wird basket, le reste de ses caractéristiques n'est pas décuplé. Sa peau

grow 100 times and it's inside (so it's volume) grows by 1000 times. The volume um das 100-fache wachsen und sein Inneres (also sein Volumen) um das 1000-fache wachsen. Das Volumen augmente de 100 fois et son intérieur (donc son volume) augmente de 1000 fois. Le volume

determines the weight, or more accurately, mass of the animal. The more mass you

have, the higher your kinetic energy before you hit the ground and the plus votre énergie cinétique est élevée avant que vous ne touchiez le sol et plus votre énergie cinétique est élevée avant que vous ne touchiez le sol et plus votre énergie cinétique est élevée.

stronger the impact shock. The more surface area in relation to your volume

or mass you have, the more the impact gets distributed and softened, and also ou la masse, plus l'impact est réparti et adouci, et aussi plus l'impact est réparti et adouci.

the more air resistance will slow you down. An elephant is so big that it has plus la résistance de l'air est importante, plus vous serez ralenti. Un éléphant est si grand qu'il a

extremely little surface area in ratio to its volume. So a lot of kinetic energy

gets distributed over a small space and the air doesn't slow it down much at all.

That's why it's completely destroyed in an impressive explosion of goo when it

hits the ground. The other extreme, insects, have a huge surface area in

relation to their tiny mass so you can literally throw an ant from an airplane

and it will not be seriously harmed. But while falling is irrelevant in the small en het zal niet ernstig worden geschaad. Maar vallen is niet relevant in de kleine

world there are other forces for the harmless for us but extremely dangerous monde, il y a d'autres forces pour l'inoffensif pour nous mais extrêmement dangereux

for small beings. Like surface tension which turns water into a potentially pour les petits êtres. Comme la tension superficielle qui fait de l'eau une matière potentiellement

deadly substance for insects. How does it work? Water has the tendency to stick to substance mortelle pour les insectes. Comment cela fonctionne-t-il ? L'eau a tendance à adhérer aux

itself; its molecules are attracted to each other through a force called

cohesion which creates a tension on its surface that you can imagine as a sort cohésion qui crée une tension à sa surface que l'on peut imaginer comme une sorte de

of invisible skin. For us this skin is so weak that we don't even notice it d'une peau invisible. Pour nous, cette peau est si faible que nous ne la remarquons même pas

normally. If you get wet about 800 grams of water or about one percent of your normalement. Si vous vous mouillez, environ 800 grammes d'eau, soit environ un pour cent de votre poids, peuvent être absorbés.

body weight sticks to you. A wet mouse has about 3 grams of water sticking to Le poids corporel d'une personne lui colle à la peau. Une souris mouillée a environ 3 grammes d'eau qui adhèrent à son corps.

it, which is more than 10% of its body weight. Imagine having eight full water

bottle sticking to you when you leave the shower. But for an insect the force

of water surface tension is so strong that getting wet is a question of life

and death. If we were to shrink you to the size of

an ant and you touch water it would be like you were reaching into glue. It

would quickly engulf you, its surface tension too hard for you to break and zou je snel overspoelen, de oppervlaktespanning is te moeilijk om te doorbreken en 会很快吞没你,它的表面张力对你来说太难打破了

you'd drown. So insects evolved to be water repellent. For one their exoskeleton is vous vous noieriez. Les insectes ont donc évolué pour être hydrophobes. D'une part, leur exosquelette est 你会淹死的。所以昆虫进化成了防水的。一方面,他们的外骨骼是

covered with a thin layer of wax just like a car. This makes their surface at sont recouverts d'une fine couche de cire, comme une voiture. Cela rend leur surface à

least partly water repellent because it can't stick to it very well. Many insects L'eau est au moins en partie hydrofuge car elle ne peut pas y adhérer. De nombreux insectes 至少部分防水,因为它不能很好地粘在上面。许多昆虫

are also covered with tiny hairs that serve as a barrier. They vastly increase sont également recouverts de minuscules poils qui servent de barrière. Ils augmentent considérablement 也覆盖着细小的毛发,作为屏障。他们大大增加

their surface area and prevent the droplets from touching their exoskeleton 它们的表面积并防止液滴接触它们的外骨骼

and make it easier to get rid of droplets. To make use of surface tension et faciliter l'élimination des gouttelettes. Pour utiliser la tension superficielle

evolution cracked nanotechnology billions of years before us. Some insects L'évolution a cracké les nanotechnologies des milliards d'années avant nous. Certains insectes Эволюция создала нанотехнологии за миллиарды лет до нас. Некоторые насекомые 进化在我们之前数十亿年破解了纳米技术。一些昆虫

have evolved a surface covered by a short and extremely dense coat of water ont évolué vers une surface recouverte d'une couche d'eau courte et extrêmement dense 已经进化出被一层短而极密的水层覆盖的表面

repelling hair. Some have more than a million hairs per square millimeter when repousser les poils. Certains ont plus d'un million de poils par millimètre carré lorsqu'ils sont en contact avec la peau. 排斥头发。有些人每平方毫米有超过一百万根头发,当

the insect dives under water air stays inside their fur and forms a coat of air. l'insecte plonge sous l'eau l'air reste dans sa fourrure et forme un manteau d'air.

Water can't enter it because their hairs are too tiny to break its surface tension.

But it gets even better, as the oxygen of the air bubble runs out, new oxygen Mais il y a mieux encore : lorsque l'oxygène de la bulle d'air s'épuise, de l'oxygène nouveau apparaît.

diffuses into the bubble from the water around, it while the carbon dioxide se diffuse dans la bulle à partir de l'eau qui l'entoure, tandis que le dioxyde de carbone se diffuse dans la bulle à partir de l'eau qui l'entoure. 从周围的水中扩散到气泡中,而二氧化碳

diffuses outwards into the water. And so the insect carries its own outside lung se diffuse dans l'eau. L'insecte transporte ainsi son propre poumon à l'extérieur. 向外扩散到水中。所以昆虫有自己的外肺

around and can basically breathe underwater thanks to surface tension. 由于表面张力,基本上可以在水下呼吸。

This is the same principle that enables pond skaters to walk on water by the way, C'est le même principe qui permet aux patineurs de marcher sur l'eau, Это тот же принцип, который, кстати, позволяет прудовым конькобежцам ходить по воде, 这与让池塘滑冰者顺便在水上行走的原理是一样的,

tiny anti-water hairs. The smaller you get the weirder the environment becomes. At de minuscules poils anti-eau. Plus on est petit, plus l'environnement devient bizarre. A l'heure actuelle 微小的抗水毛发。越小,环境就越奇怪。在

some point even air becomes more and more solid. Let's now zoom down to the à un moment donné, même l'air devient de plus en plus solide. Zoomons maintenant sur le 在某些时候,甚至空气也变得越来越固体。现在让我们缩小到

smallest insects known, about half the size of a grain of salt, 已知最小的昆虫,大约是一粒盐的一半大小,

only 0.15 millimeters long: the Fairy Fly. They live in a world even weirder than de 0,15 millimètre de long : la mouche des fées. Elles vivent dans un monde encore plus étrange que celui de la 只有 0.15 毫米长:Fairy Fly。他们生活在一个比

another insects. For them air itself is like thin jello, a syrup-like mass d'autres insectes. Pour eux, l'air lui-même est comme une gelée fine, une masse semblable à du sirop другие насекомые. Для них сам воздух - как жидкое желе, сиропообразная масса. 另一种昆虫。对他们来说,空气本身就像薄薄的果冻,像糖浆一样的物质

surrounding them at all times. Movement through it is not easy. Flying qui les entoure en permanence. Il n'est pas facile de s'y déplacer. Voler 无时无刻不在包围着他们。通过它移动并不容易。飞行

on this level is not like elegant gliding; they have to kind of grab and à ce niveau, il ne s'agit pas d'un vol plané élégant ; ils doivent en quelque sorte s'agripper et 在这个层面上不像是优雅的滑翔;他们必须抓住并

hold onto air. So their wings look like big hairy arms rather than proper insect 抓住空气。所以它们的翅膀看起来像毛茸茸的大手臂而不是真正的昆虫

wings. They literally swim through the air, like a tiny gross alien through 翅膀。他们真的在空中游泳,就像一个小小的外星人穿过

syrup. Things only become stranger from here on 糖浆。事情从此变得陌生

as we explore more diversity of different sizes. The physical rules are 随着我们探索更多不同尺寸的多样性。物理规则是

so different for each size that evolution had to engineer around them si différents pour chaque taille que l'évolution a dû les contourner 每种尺寸都如此不同,以至于进化必须围绕它们进行设计

over and over as life grew in size in the last billion years. So why are there à chaque fois que la vie s'est développée au cours du dernier milliard d'années. Alors pourquoi y a-t-il 在过去的十亿年里,随着生命规模的扩大,一次又一次。那么为什么会有

no ants the size of horses? Why are no elephants the size of amoeba? Why? geen mieren zo groot als paarden? Waarom zijn geen olifanten zo groot als een amoebe? Waarom? 没有马那么大的蚂蚁?为什么没有像变形虫那么大的大象?为什么?

We'll discuss this in the next part.

We have a monthly newsletter now, sign up if 我们现在有每月通讯,请注册

you don't want to miss new videos and for bonus videos.