×

We use cookies to help make LingQ better. By visiting the site, you agree to our cookie policy.


image

TED, Paula Hammond: A new superweapon in the fight against cancer

Paula Hammond: A new superweapon in the fight against cancer

00:11Cancer affects all of us -- especially the ones that come back over and over again, the highly invasive and drug-resistant ones, the ones that defy medical treatment, even when we throw our best drugs at them. Engineering at the molecular level, working at the smallest of scales, can provide exciting new ways to fight the most aggressive forms of cancer.

00:38Cancer is a very clever disease. There are some forms of cancer, which, fortunately, we've learned how to address relatively well with known and established drugs and surgery. But there are some forms of cancer that don't respond to these approaches, and the tumor survives or comes back, even after an onslaught of drugs. 01:01We can think of these very aggressive forms of cancer as kind of supervillains in a comic book. They're clever, they're adaptable, and they're very good at staying alive. And, like most supervillains these days,their superpowers come from a genetic mutation. The genes that are modified inside these tumor cells can enable and encode for new and unimagined modes of survival, allowing the cancer cell to live through even our best chemotherapy treatments.

01:37One example is a trick in which a gene allows a cell, even as the drug approaches the cell, to push the drug out, before the drug can have any effect. Imagine -- the cell effectively spits out the drug. This is just one example of the many genetic tricks in the bag of our supervillain, cancer. All due to mutant genes.

02:03So, we have a supervillain with incredible superpowers. And we need a new and powerful mode of attack. Actually, we can turn off a gene. The key is a set of molecules known as siRNA. siRNA are short sequences of genetic code that guide a cell to block a certain gene. Each siRNA molecule can turn off a specific gene inside the cell. For many years since its discovery, scientists have been very excited about how we can apply these gene blockers in medicine.

02:42But, there is a problem. siRNA works well inside the cell. But if it gets exposed to the enzymes that reside in our bloodstream or our tissues, it degrades within seconds. It has to be packaged, protected through its journey through the body on its way to the final target inside the cancer cell.

03:02So, here's our strategy. First, we'll dose the cancer cell with siRNA, the gene blocker, and silence those survival genes, and then we'll whop it with a chemo drug. But how do we carry that out? Using molecular engineering, we can actually design a superweapon that can travel through the bloodstream. It has to be tiny enough to get through the bloodstream, it's got to be small enough to penetrate the tumor tissue,and it's got to be tiny enough to be taken up inside the cancer cell. To do this job well, it has to be about one one-hundredth the size of a human hair.

03:43Let's take a closer look at how we can build this nanoparticle. First, let's start with the nanoparticle core.It's a tiny capsule that contains the chemotherapy drug. This is the poison that will actually end the tumor cell's life. Around this core, we'll wrap a very thin, nanometers-thin blanket of siRNA. This is our gene blocker. Because siRNA is strongly negatively charged, we can protect it with a nice, protective layer of positively charged polymer. The two oppositely charged molecules stick together through charge attraction, and that provides us with a protective layer that prevents the siRNA from degrading in the bloodstream. We're almost done. 04:30(Laughter)

04:31But there is one more big obstacle we have to think about. In fact, it may be the biggest obstacle of all.How do we deploy this superweapon? I mean, every good weapon needs to be targeted, we have to target this superweapon to the supervillain cells that reside in the tumor.

04:49But our bodies have a natural immune-defense system: cells that reside in the bloodstream and pick out things that don't belong, so that it can destroy or eliminate them. And guess what? Our nanoparticle is considered a foreign object. We have to sneak our nanoparticle past the tumor defense system. We have to get it past this mechanism of getting rid of the foreign object by disguising it.

05:16So we add one more negatively charged layer around this nanoparticle, which serves two purposes. First, this outer layer is one of the naturally charged, highly hydrated polysaccharides that resides in our body.It creates a cloud of water molecules around the nanoparticle that gives us an invisibility cloaking effect.This invisibility cloak allows the nanoparticle to travel through the bloodstream long and far enough to reach the tumor, without getting eliminated by the body.

05:51Second, this layer contains molecules which bind specifically to our tumor cell. Once bound, the cancer cell takes up the nanoparticle, and now we have our nanoparticle inside the cancer cell and ready to deploy.

06:10Alright! I feel the same way. Let's go! 06:12(Applause)

06:19The siRNA is deployed first. It acts for hours, giving enough time to silence and block those survival genes. We have now disabled those genetic superpowers. What remains is a cancer cell with no special defenses. Then, the chemotherapy drug comes out of the core and destroys the tumor cell cleanly and efficiently. With sufficient gene blockers, we can address many different kinds of mutations, allowing the chance to sweep out tumors, without leaving behind any bad guys.

06:55So, how does our strategy work? We've tested these nanostructure particles in animals using a highly aggressive form of triple-negative breast cancer. This triple-negative breast cancer exhibits the gene that spits out cancer drug as soon as it is delivered.

07:14Usually, doxorubicin -- let's call it "dox" -- is the cancer drug that is the first line of treatment for breast cancer. So, we first treated our animals with a dox core, dox only. The tumor slowed their rate of growth,but they still grew rapidly, doubling in size over a period of two weeks.

07:36Then, we tried our combination superweapon. A nanolayer particle with siRNA against the chemo pump,plus, we have the dox in the core. And look -- we found that not only did the tumors stop growing, they actually decreased in size and were eliminated in some cases. The tumors were actually regressing.

08:00(Applause)

08:08What's great about this approach is that it can be personalized. We can add many different layers of siRNA to address different mutations and tumor defense mechanisms. And we can put different drugs into the nanoparticle core. As doctors learn how to test patients and understand certain tumor genetic types, they can help us determine which patients can benefit from this strategy and which gene blockers we can use.

08:37Ovarian cancer strikes a special chord with me. It is a very aggressive cancer, in part because it's discovered at very late stages, when it's highly advanced and there are a number of genetic mutations.After the first round of chemotherapy, this cancer comes back for 75 percent of patients. And it usually comes back in a drug-resistant form. High-grade ovarian cancer is one of the biggest supervillains out there. And we're now directing our superweapon toward its defeat. 09:10As a researcher, I usually don't get to work with patients. But I recently met a mother who is an ovarian cancer survivor, Mimi, and her daughter, Paige. I was deeply inspired by the optimism and strength that both mother and daughter displayed and by their story of courage and support. At this event, we spoke about the different technologies directed at cancer. And Mimi was in tears as she explained how learning about these efforts gives her hope for future generations, including her own daughter. This really touched me. It's not just about building really elegant science. It's about changing people's lives. It's about understanding the power of engineering on the scale of molecules. 10:02I know that as students like Paige move forward in their careers, they'll open new possibilities in addressing some of the big health problems in the world -- including ovarian cancer, neurological disorders, infectious disease -- just as chemical engineering has found a way to open doors for me, and has provided a way of engineering on the tiniest scale, that of molecules, to heal on the human scale. 10:30Thank you.

10:31(Applause)


Paula Hammond: A new superweapon in the fight against cancer Paula Hammond: Eine neue Superwaffe im Kampf gegen den Krebs Paula Hammond: Hammond: Ένα νέο υπερόπλο στη μάχη κατά του καρκίνου Paula Hammond: Nowa superbroń w walce z rakiem Paula Hammond: Uma nova super arma na luta contra o cancro Пола Хэммонд: Новое супероружие в борьбе с раком Paula Hammond: Kanserle mücadelede yeni bir süper silah 宝拉-哈蒙德抗击癌症的新超级武器 Paula Hammond:對抗癌症的新超級武器

00:11Cancer affects all of us -- especially the ones that come back over and over again, the highly invasive and drug-resistant ones, the ones that defy medical treatment, even when we throw our best drugs at them. Engineering at the molecular level, working at the smallest of scales, can provide exciting new ways to fight the most aggressive forms of cancer.

00:38Cancer is a very clever disease. There are some forms of cancer, which, fortunately, we've learned how to address relatively well with known and established drugs and surgery. Il existe certaines formes de cancer que, heureusement, nous avons appris à traiter relativement bien avec des médicaments et une chirurgie connus et établis. But there are some forms of cancer that don't respond to these approaches, and the tumor survives or comes back, even after an onslaught of drugs. Mais il existe certaines formes de cancer qui ne répondent pas à ces approches, et la tumeur survit ou réapparaît, même après une avalanche de médicaments. 01:01We can think of these very aggressive forms of cancer as kind of supervillains in a comic book. They're clever, they're adaptable, and they're very good at staying alive. And, like most supervillains these days,their superpowers come from a genetic mutation. The genes that are modified inside these tumor cells can enable and encode for new and unimagined modes of survival, allowing the cancer cell to live through even our best chemotherapy treatments. Les gènes modifiés à l'intérieur de ces cellules tumorales peuvent permettre et coder pour des modes de survie nouveaux et inimaginables, permettant à la cellule cancéreuse de vivre même nos meilleurs traitements de chimiothérapie.

01:37One example is a trick in which a gene allows a cell, even as the drug approaches the cell, to push the drug out, before the drug can have any effect. Imagine -- the cell effectively spits out the drug. This is just one example of the many genetic tricks in the bag of our supervillain, cancer. All due to mutant genes.

02:03So, we have a supervillain with incredible superpowers. And we need a new and powerful mode of attack. Actually, we can turn off a gene. The key is a set of molecules known as siRNA. siRNA are short sequences of genetic code that guide a cell to block a certain gene. Each siRNA molecule can turn off a specific gene inside the cell. For many years since its discovery, scientists have been very excited about how we can apply these gene blockers in medicine. Depuis de nombreuses années depuis sa découverte, les scientifiques ont été très enthousiasmés par la façon dont nous pouvons appliquer ces bloqueurs de gènes en médecine.

02:42But, there is a problem. siRNA works well inside the cell. But if it gets exposed to the enzymes that reside in our bloodstream or our tissues, it degrades within seconds. It has to be packaged, protected through its journey through the body on its way to the final target inside the cancer cell.

03:02So, here's our strategy. First, we'll dose the cancer cell with siRNA, the gene blocker, and silence those survival genes, and then we'll whop it with a chemo drug. Tout d'abord, nous allons doser la cellule cancéreuse avec l'ARNsi, le bloqueur de gène, et faire taire ces gènes de survie, puis nous allons le couper avec un médicament chimio. But how do we carry that out? Using molecular engineering, we can actually design a superweapon that can travel through the bloodstream. It has to be tiny enough to get through the bloodstream, it's got to be small enough to penetrate the tumor tissue,and it's got to be tiny enough to be taken up inside the cancer cell. To do this job well, it has to be about one one-hundredth the size of a human hair.

03:43Let's take a closer look at how we can build this nanoparticle. First, let's start with the nanoparticle core.It's a tiny capsule that contains the chemotherapy drug. This is the poison that will actually end the tumor cell's life. Around this core, we'll wrap a very thin, nanometers-thin blanket of siRNA. This is our gene blocker. Because siRNA is strongly negatively charged, we can protect it with a nice, protective layer of positively charged polymer. The two oppositely charged molecules stick together through charge attraction, and that provides us with a protective layer that prevents the siRNA from degrading in the bloodstream. Les deux molécules de charge opposée collent ensemble par attraction de charge, ce qui nous fournit une couche protectrice qui empêche l'ARNsi de se dégrader dans la circulation sanguine. We're almost done. 04:30(Laughter)

04:31But there is one more big obstacle we have to think about. In fact, it may be the biggest obstacle of all.How do we deploy this superweapon? I mean, every good weapon needs to be targeted, we have to target this superweapon to the supervillain cells that reside in the tumor.

04:49But our bodies have a natural immune-defense system: cells that reside in the bloodstream and pick out things that don't belong, so that it can destroy or eliminate them. And guess what? Our nanoparticle is considered a foreign object. We have to sneak our nanoparticle past the tumor defense system. We have to get it past this mechanism of getting rid of the foreign object by disguising it.

05:16So we add one more negatively charged layer around this nanoparticle, which serves two purposes. First, this outer layer is one of the naturally charged, highly hydrated polysaccharides that resides in our body.It creates a cloud of water molecules around the nanoparticle that gives us an invisibility cloaking effect.This invisibility cloak allows the nanoparticle to travel through the bloodstream long and far enough to reach the tumor, without getting eliminated by the body. Premièrement, cette couche externe est l'un des polysaccharides naturellement chargés et hautement hydratés qui résident dans notre corps.Il crée un nuage de molécules d'eau autour de la nanoparticule qui nous donne un effet de camouflage d'invisibilité.Cette cape d'invisibilité permet à la nanoparticule de voyager dans la circulation sanguine. assez long et assez loin pour atteindre la tumeur, sans être éliminé par l'organisme.

05:51Second, this layer contains molecules which bind specifically to our tumor cell. 05: 51Deuxièmement, cette couche contient des molécules qui se lient spécifiquement à notre cellule tumorale. Once bound, the cancer cell takes up the nanoparticle, and now we have our nanoparticle inside the cancer cell and ready to deploy.

06:10Alright! I feel the same way. Let's go! 06:12(Applause)

06:19The siRNA is deployed first. It acts for hours, giving enough time to silence and block those survival genes. We have now disabled those genetic superpowers. What remains is a cancer cell with no special defenses. Then, the chemotherapy drug comes out of the core and destroys the tumor cell cleanly and efficiently. With sufficient gene blockers, we can address many different kinds of mutations, allowing the chance to sweep out tumors, without leaving behind any bad guys.

06:55So, how does our strategy work? We've tested these nanostructure particles in animals using a highly aggressive form of triple-negative breast cancer. This triple-negative breast cancer exhibits the gene that spits out cancer drug as soon as it is delivered.

07:14Usually, doxorubicin -- let's call it "dox" -- is the cancer drug that is the first line of treatment for breast cancer. So, we first treated our animals with a dox core, dox only. The tumor slowed their rate of growth,but they still grew rapidly, doubling in size over a period of two weeks.

07:36Then, we tried our combination superweapon. A nanolayer particle with siRNA against the chemo pump,plus, we have the dox in the core. And look -- we found that not only did the tumors stop growing, they actually decreased in size and were eliminated in some cases. The tumors were actually regressing.

08:00(Applause)

08:08What's great about this approach is that it can be personalized. We can add many different layers of siRNA to address different mutations and tumor defense mechanisms. And we can put different drugs into the nanoparticle core. As doctors learn how to test patients and understand certain tumor genetic types, they can help us determine which patients can benefit from this strategy and which gene blockers we can use.

08:37Ovarian cancer strikes a special chord with me. 08: 37Le cancer de l'ovaire me touche particulièrement. It is a very aggressive cancer, in part because it's discovered at very late stages, when it's highly advanced and there are a number of genetic mutations.After the first round of chemotherapy, this cancer comes back for 75 percent of patients. And it usually comes back in a drug-resistant form. High-grade ovarian cancer is one of the biggest supervillains out there. And we're now directing our superweapon toward its defeat. 09:10As a researcher, I usually don't get to work with patients. But I recently met a mother who is an ovarian cancer survivor, Mimi, and her daughter, Paige. I was deeply inspired by the optimism and strength that both mother and daughter displayed and by their story of courage and support. At this event, we spoke about the different technologies directed at cancer. And Mimi was in tears as she explained how learning about these efforts gives her hope for future generations, including her own daughter. This really touched me. It's not just about building really elegant science. It's about changing people's lives. It's about understanding the power of engineering on the scale of molecules. 10:02I know that as students like Paige move forward in their careers, they'll open new possibilities in addressing some of the big health problems in the world -- including ovarian cancer, neurological disorders, infectious disease -- just as chemical engineering has found a way to open doors for me, and has provided a way of engineering on the tiniest scale, that of molecules, to heal on the human scale. 10:30Thank you.

10:31(Applause)