×

We use cookies to help make LingQ better. By visiting the site, you agree to our cookie policy.


image

TED, Nathalie Cabrol: How Mars might hold the secret to the origin of life (1)

Nathalie Cabrol: How Mars might hold the secret to the origin of life (1)

0:11 Well, you know, sometimes the most important things come in the smallest packages.

I am going to try to convince you, in the 15 minutes I have, that microbes have a lot to say about questions such as, "Are we alone? " and they can tell us more about not only life in our solar system but also maybe beyond, and this is why I am tracking them down in the most impossible places on Earth, in extreme environments where conditions are really pushing them to the brink of survival. Actually, sometimes me too, when I'm trying to follow them too close. But here's the thing: We are the only advanced civilization in the solar system, but that doesn't mean that there is no microbial life nearby. In fact, the planets and moons you see here could host life -- all of them -- and we know that, and it's a strong possibility. And if we were going to find life on those moons and planets, then we would answer questions such as, are we alone in the solar system? Where are we coming from? Do we have family in the neighborhood? Is there life beyond our solar system?

1:27 And we can ask all those questions because there has been a revolution in our understanding of what a habitable planet is, and today, a habitable planet is a planet that has a zone where water can stay stable, but to me, this is a horizontal definition of habitability, because it involves a distance to a star, but there is another dimension to habitability, and this is a vertical dimension.

Think of it as conditions in the subsurface of a planet where you are very far away from a sun, but you still have water, energy, nutrients, which for some of them means food, and a protection. And when you look at the Earth, very far away from any sunlight, deep in the ocean, you have life thriving and it uses only chemistry for life processes.

2:24 So when you think of it at that point, all walls collapse.

You have no limitations, basically And if you have been looking at the headlines lately, then you will see that we have discovered a subsurface ocean on Europa, on Ganymede, on Enceladus, on Titan, and now we are finding a geyser and hot springs on Enceladus, Our solar system is turning into a giant spa. For anybody who has gone to a spa knows how much microbes like that, right? (Laughter)

2:54 So at that point, think also about Mars.

There is no life possible at the surface of Mars today, but it might still be hiding underground.

3:04 So, we have been making progress in our understanding of habitability, but we also have been making progress in our understanding of what the signatures of life are on Earth.

And you can have what we call organic molecules, and these are the bricks of life, and you can have fossils, and you can minerals, biominerals, which is due to the reaction between bacteria and rocks, and of course you can have gases in the atmosphere. And when you look at those tiny green algae on the right of the slide here, they are the direct descendants of those who have been pumping oxygen a billion years ago in the atmosphere of the Earth. When they did that, they poisoned 90 percent of the life at the surface of the Earth, but they are the reason why you are breathing this air today.

3:51 But as much as our understanding grows of all of these things, there is one question we still cannot answer, and this is, where are we coming from?

And you know, it's getting worse, because we won't be able to find the physical evidence of where we are coming from on this planet, and the reason being is that anything that is older than four billion years is gone. All record is gone, erased by plate tectonics and erosion. This is what I call the Earth's biological horizon Beyond this horizon we don't know where we are coming from.

4:27 So is everything lost?

Well, maybe not. And we might be able to find evidence of our own origin in the most unlikely place, and this place in Mars.

4:38 How is this possible?

Well clearly at the beginning of the solar system, Mars and the Earth were bombarded by giant asteroids and comets, and there were eject a from these impacts all over the place. Earth and Mars kept throwing rocks at each other for a very long time. Pieces of rocks landed on the Earth. Pieces of the Earth landed on Mars. So clearly, those two planets may have been seeded by the same material. So yeah, maybe Grand daddy is sitting there on the surface and waiting for us. But that also means that we can go to Mars and try to find traces of our own origin Mars may hold that secret for us. This is why Mars is so special to us.

5:22 But for that to happen, Mars needed to be habitable at the time when conditions were right.

So was Mars habitable? We have a number of missions telling us exactly the same thing today. At the time when life appeared on the Earth, Mars did have an ocean, it had volcanoes, it had lakes, and it had deltas like the beautiful picture you see here. This picture was sent by the Curiosity rover only a few weeks ago. It shows the remnants of a delta, and this picture tells us something: water was abundant and stayed founting at the surface for a very long time. This is good news for life. Life chemistry takes a long time to actually happen.

6:03 So this is extremely good news, but does that mean that if we go there, life will be easy to find on Mars? Not necessarily

6:11 Here's what happened: At the time when life exploded at the surface of the Earth, then everything went south for Mars, literally.

The atmosphere was stripped away by solar winds, Mars lost its magnetosphere, and then cosmic rays and U.V. bombarded the surface and water escaped to space and went underground. So if we want to be able to understand, if we want to be able to find those traces of the signatures of life at the surface of Mars, if they are there, we need to understand what was the impact of each of these events on the preservation of its record. Only then will we be able to know where those signatures are hiding, and only then will we be able to send our rover to the right places where we can sample those rocks that may be telling us something really important about who we are, or, if not, maybe telling us that somewhere, independently, life has appeared on another planet.

7:12 So to do that, it's easy.

You only need to go back 3.5 billion years ago in the past of a planet. We just need a time machine

7:23 Easy, right?

Well, actually, it is. Look around you -- that's planet Earth. This is our time machine. Geologists are using it to go back in the past of our own planet. I am using it a little bit differently. I use planet Earth to go in very extreme environments where conditions were similar to those of Mars at the time when the climate changed, and there I'm trying to understand what happened. What are the signatures of life? What is left? How are we going to find it? So for one moment now I'm going to take you with me on a trip into that time machine.

7:59 And now, what you see here, we are at 4,500 meters in the Andes, but in fact we are less than a billion years after the Earth and Mars formed.

The Earth and Mars will have looked pretty much exactly like that -- volcanoes everywhere, evaporating lakes everywhere, minerals, hot springs, and then you see those mounds on the shore of those lakes? Those are built by the descendants of the first organisms that gave us the first fossil on Earth.

8:31 But if we want to understand what's going on, we need to go a little further And the other thing about those sites is that exactly like on Mars three and a half billion years ago, the climate is changing very fast, and water and ice are disappearing.

But we need to go back to that time when everything changed on Mars, and to do that, we need to go higher. Why is that? Because when you go higher, the atmosphere is getting thinner, it's getting more unstable, the temperature is getting cooler, and you have a lot more U.V. radiation. Basically, you are getting to those conditions on Mars when everything changed.

9:09 So I was not promising anything about a leisurely trip on the time machine.

You are not going to be sitting in that time machine. You have to haul 1,000 pounds of equipment to the summit of this 20,000-foot volcano in the Andes here. That's about 6,000 meters. And you also have to sleep on 42-degree slopes and really hope that there won't be any earthquake that night. But when we get to the summit, we actually find the lake we came for. At this altitude, this lake is experiencing exactly the same conditions as those on. Mars three and a half billion years ago. And now we have to change our voyage into an inner voyage inside that lake, and to do that, we have to remove our mountain gear and actually don suits and go for it. But at the time we enter that lake, at the very moment we enter that lake, we are stepping back three and a half billion years in the past of another planet, and then we are going to get the answer came for. Life is everywhere, absolutely everywhere. Everything you see in this picture is a living organism.Maybe not so the diver, but everything else. But this picture is very deceiving. Life is abundant in those lakes, but like in many places on Earth right now and due to climate change, there is a huge loss in biodiversity In the samples that we took back home, 36 percent of the bacteria in those lakes were composed of three species, and those three species are the ones that have survived so far.

10:52 Here's another lake, right next to the first one.

The red color you see here is not due to minerals. It's actually due to the presence of a tiny algae. In this region, the U.V. radiation is really nasty. Anywhere on Earth, 11 is considered to be extreme. During U.V storms there, the U.V. Index reaches 43. SPF 30 is not going to do anything to you over there, and the water is so transparent in those lakes that the algae has nowhere to hide, really, and so they are developing their own sunscreen, and this is the red color you see. But they can adapt only so far, and then when all the water is gone from the surface, microbes have only one solution left: They go underground. And those microbes, the rocks you see in that slide here, well, they are actually living inside rocks and they are using the protection of the translucence of the rocks to get the good part of the U.V. and discard the part that could actually damage their DNA. And this is why we are taking our rover to train them to search for life on Mars in these areas, because if there was life on Mars three and a half billion years ago, it had to use the same strategy to actually protect itself. Now, it is pretty obvious that going to extreme environments is helping us very much for the exploration of Mars and to prepare missions So far, it has helped us to understand the geology of Mars. It has helped to understand the past climate of Mars and its evolution, but also its habitability potential. Our most recent rover on Mars has discovered traces of organics. Yeah, there are organics at the surface of Mars. And it also discovered traces of methane. And we don't know yet if the methane in question is really from geology or biology. Regardless, what we know is that because of the discovery, the hypothesis that there is still life present on Mars today remains a viable one.

12:59 So by now, I think I have convinced you that Mars is very special to us, but it would be a mistake to think that Mars is the only place in the solar system that is interesting to find potential microbial life.

And the reason is because Mars and the Earth could have a common root to their tree of life, but when you go beyond Mars, it's not that easy. Celestial mechanics is not making it so easy for an exchange of material between planets, and so if we were to discover life on those planets, it would be different from us


Nathalie Cabrol: How Mars might hold the secret to the origin of life (1) Nathalie Cabrol: Wie der Mars das Geheimnis des Ursprungs des Lebens bergen könnte (1) Nathalie Cabrol: Cómo Marte podría guardar el secreto del origen de la vida (1) Nathalie Cabrol : Comment Mars pourrait détenir le secret de l'origine de la vie (1) ナタリー・カブロル:火星に生命の起源の秘密があるかもしれない (1) Nathalie Cabrol: Jak Mars może skrywać tajemnicę powstania życia (1) Nathalie Cabrol: Como Marte pode conter o segredo da origem da vida (1) Nathalie Cabrol: Mars yaşamın kökeninin sırrını nasıl saklıyor olabilir (1) 娜塔莉·卡布罗尔:火星如何保守生命起源的秘密 (1) 娜塔莉卡布羅爾:火星如何保守生命起源的秘密 (1)

0:11 Well, you know, sometimes the most important things come in the smallest packages.

I am going to try to convince you, in the 15 minutes I have, that microbes have a lot to say about questions such as, "Are we alone? " and they can tell us more about not only life in our solar system but also maybe beyond, and this is why I am tracking them down in the most impossible places on Earth, in extreme environments where conditions are really pushing them to the brink of survival. "y pueden decirnos más sobre no solo la vida en nuestro sistema solar sino también quizás más allá, y es por eso que los estoy rastreando en los lugares más imposibles de la Tierra, en entornos extremos donde las condiciones realmente los están empujando al borde de supervivencia. Actually, sometimes me too, when I'm trying to follow them too close. En realidad, a veces yo también, cuando trato de seguirlos demasiado cerca. But here's the thing: We are the only advanced civilization in the solar system, but that doesn't mean that there is no microbial life nearby. Pero aquí está la cuestión: somos la única civilización avanzada en el sistema solar, pero eso no significa que no haya vida microbiana cerca. In fact, the planets and moons you see here could host life -- all of them -- and we know that, and it's a strong possibility. De hecho, los planetas y las lunas que ves aquí podrían albergar la vida, todos ellos, y lo sabemos, y es una gran posibilidad. And if we were going to find life on those moons and planets, then we would answer questions such as, are we alone in the solar system? Where are we coming from? Do we have family in the neighborhood? Is there life beyond our solar system?

1:27 And we can ask all those questions because there has been a revolution in our understanding of what a habitable planet is, and today, a habitable planet is a planet that has a zone where water can stay stable, but to me, this is a horizontal definition of habitability, because it involves a distance to a star, but there is another dimension to habitability, and this is a vertical dimension. 1:27 Y podemos hacer todas esas preguntas porque ha habido una revolución en nuestra comprensión de lo que es un planeta habitable, y hoy, un planeta habitable es un planeta que tiene una zona donde el agua puede permanecer estable, pero para mí esto es una definición horizontal de habitabilidad, porque implica una distancia a una estrella, pero hay otra dimensión a la habitabilidad, y esta es una dimensión vertical.

Think of it as conditions in the subsurface of a planet where you are very far away from a sun, but you still have water, energy, nutrients, which for some of them means food, and a protection. Piense en ello como las condiciones en el subsuelo de un planeta en el que está muy lejos del sol, pero aún tiene agua, energía, nutrientes, que para algunos de ellos significa alimento y protección. And when you look at the Earth, very far away from any sunlight, deep in the ocean, you have life thriving and it uses only chemistry for life processes. Y cuando miras a la Tierra, muy lejos de la luz solar, en las profundidades del océano, tienes vida próspera y solo utiliza la química para los procesos de la vida.

2:24 So when you think of it at that point, all walls collapse. 2:24 Entonces, cuando lo piensas en ese punto, todas las paredes se derrumban.

You have no limitations, basically And if you have been looking at the headlines lately, then you will see that we have discovered a subsurface ocean on Europa, on Ganymede, on Enceladus, on Titan, and now we are finding a geyser and hot springs on Enceladus, Our solar system is turning into a giant spa. Básicamente no tienes limitaciones. Y si has estado buscando en los titulares últimamente, verás que hemos descubierto un océano subterráneo en Europa, en Ganimedes, en Encelado, en Titán, y ahora estamos encontrando un géiser y aguas termales. en Encelado, nuestro sistema solar se está convirtiendo en un spa gigante. For anybody who has gone to a spa knows how much microbes like that, right? (Laughter)

2:54 So at that point, think also about Mars. 2:54 Entonces, en ese punto, piensa también en Marte.

There is no life possible at the surface of Mars today, but it might still be hiding underground. Hoy en día no hay vida en la superficie de Marte, pero aún podría estar escondido bajo tierra.

3:04 So, we have been making progress in our understanding of habitability, but we also have been making progress in our understanding of what the signatures of life are on Earth. 3:04 Entonces, hemos estado progresando en nuestra comprensión de la habitabilidad, pero también hemos estado progresando en nuestra comprensión de lo que son las firmas de la vida en la Tierra.

And you can have what we call organic molecules, and these are the bricks of life, and you can have fossils, and you can minerals, biominerals, which is due to the reaction between bacteria and rocks, and of course you can have gases in the atmosphere. Y puedes tener lo que llamamos moléculas orgánicas, y estos son los ladrillos de la vida, y puedes tener fósiles y minerales, biominerales, que se deben a la reacción entre las bacterias y las rocas, y por supuesto puedes tener gases en la atmósfera. And when you look at those tiny green algae on the right of the slide here, they are the direct descendants of those who have been pumping oxygen a billion years ago in the atmosphere of the Earth. Y cuando miras esas pequeñas algas verdes a la derecha de la diapositiva aquí, son los descendientes directos de aquellos que han estado bombeando oxígeno hace mil millones de años en la atmósfera de la Tierra. When they did that, they poisoned 90 percent of the life at the surface of the Earth, but they are the reason why you are breathing this air today. Cuando hicieron eso, envenenaron el 90 por ciento de la vida en la superficie de la Tierra, pero son la razón por la que respiras este aire hoy.

3:51 But as much as our understanding grows of all of these things, there is one question we still cannot answer, and this is, where are we coming from? 3:51 Pero a medida que nuestra comprensión crece de todas estas cosas, hay una pregunta que todavía no podemos responder, y esto es, ¿de dónde venimos?

And you know, it's getting worse, because we won't be able to find the physical evidence of where we are coming from on this planet, and the reason being is that anything that is older than four billion years is gone. Y ya sabes, está empeorando, porque no podremos encontrar la evidencia física de dónde venimos en este planeta, y la razón es que todo lo que es más antiguo que cuatro mil millones de años ha desaparecido. All record is gone, erased by plate tectonics and erosion. Todo el registro se ha ido, borrado por la tectónica de placas y la erosión. This is what I call the Earth's biological horizon Beyond this horizon we don't know where we are coming from. Esto es lo que llamo el horizonte biológico de la Tierra. Más allá de este horizonte, no sabemos de dónde venimos.

4:27 So is everything lost?

Well, maybe not. And we might be able to find evidence of our own origin in the most unlikely place, and this place in Mars. Y podríamos encontrar evidencia de nuestro propio origen en el lugar más improbable, y este lugar en Marte.

4:38 How is this possible?

Well clearly at the beginning of the solar system, Mars and the Earth were bombarded by giant asteroids and comets, and there were eject a from these impacts all over the place. Bien claramente al comienzo del sistema solar, Marte y la Tierra fueron bombardeados por asteroides y cometas gigantes, y se expulsaron de estos impactos por todo el lugar. Earth and Mars kept throwing rocks at each other for a very long time. La Tierra y Marte se mantuvieron lanzándose piedras durante mucho tiempo. Pieces of rocks landed on the Earth. Pieces of the Earth landed on Mars. So clearly, those two planets may have been seeded by the same material. Claramente, esos dos planetas pueden haber sido sembrados por el mismo material. So yeah, maybe Grand daddy is sitting there on the surface and waiting for us. Así que sí, tal vez el gran papá está sentado allí en la superficie y esperándonos. But that also means that we can go to Mars and try to find traces of our own origin Mars may hold that secret for us. This is why Mars is so special to us. Pero eso también significa que podemos ir a Marte y tratar de encontrar rastros de nuestro propio origen. Marte puede guardar ese secreto para nosotros. Por eso Marte es tan especial para nosotros.

5:22 But for that to happen, Mars needed to be habitable at the time when conditions were right.

So was Mars habitable? We have a number of missions telling us exactly the same thing today. At the time when life appeared on the Earth, Mars did have an ocean, it had volcanoes, it had lakes, and it had deltas like the beautiful picture you see here. En el momento en que apareció la vida en la Tierra, Marte tenía un océano, tenía volcanes, tenía lagos y tenía deltas como la hermosa imagen que se ve aquí. This picture was sent by the Curiosity rover only a few weeks ago. Esta foto fue enviada por el rover Curiosity hace solo unas semanas. It shows the remnants of a delta, and this picture tells us something: water was abundant and stayed founting at the surface for a very long time. Muestra los restos de un delta, y esta imagen nos dice algo: el agua era abundante y se mantuvo en la superficie durante mucho tiempo. This is good news for life. Esta es una buena noticia para la vida. Life chemistry takes a long time to actually happen.

6:03 So this is extremely good news, but does that mean that if we go there, life will be easy to find on Mars? Not necessarily 6:03 Entonces, esta es una muy buena noticia, pero ¿eso significa que si vamos allí, la vida será fácil de encontrar en Marte? No necesariamente

6:11 Here's what happened: At the time when life exploded at the surface of the Earth, then everything went south for Mars, literally. 6:11 Esto es lo que sucedió: en el momento en que la vida explotó en la superficie de la Tierra, entonces todo se fue al sur para Marte, literalmente. 6:11 Вот что произошло: В то время, когда жизнь взорвалась на поверхности Земли, на Марсе все буквально пошло наперекосяк.

The atmosphere was stripped away by solar winds, Mars lost its magnetosphere, and then cosmic rays and U.V. La atmósfera fue despojada por los vientos solares, Marte perdió su magnetosfera, y luego los rayos cósmicos y UV. bombarded the surface and water escaped to space and went underground. Bombardearon la superficie y el agua escapó al espacio y pasó a la clandestinidad. So if we want to be able to understand, if we want to be able to find those traces of the signatures of life at the surface of Mars, if they are there, we need to understand what was the impact of each of these events on the preservation of its record. Entonces, si queremos poder entender, si queremos encontrar esos rastros de las firmas de la vida en la superficie de Marte, si están allí, debemos entender cuál fue el impacto de cada uno de estos eventos en La preservación de su registro. Only then will we be able to know where those signatures are hiding, and only then will we be able to send our rover to the right places where we can sample those rocks that may be telling us something really important about who we are, or, if not, maybe telling us that somewhere, independently, life has appeared on another planet. Solo así podremos saber dónde se esconden esas firmas, y solo así podremos enviar a nuestro rover a los lugares correctos donde podremos probar esas rocas que pueden estar diciendo algo realmente importante sobre quiénes somos, o Si no, quizás nos diga que en algún lugar, independientemente, la vida ha aparecido en otro planeta.

7:12 So to do that, it's easy.

You only need to go back 3.5 billion years ago in the past of a planet. We just need a time machine

7:23 Easy, right?

Well, actually, it is. Look around you -- that's planet Earth. This is our time machine. Geologists are using it to go back in the past of our own planet. I am using it a little bit differently. I use planet Earth to go in very extreme environments where conditions were similar to those of Mars at the time when the climate changed, and there I'm trying to understand what happened. What are the signatures of life? What is left? ¿Lo que queda? Что осталось? How are we going to find it? So for one moment now I'm going to take you with me on a trip into that time machine.

7:59 And now, what you see here, we are at 4,500 meters in the Andes, but in fact we are less than a billion years after the Earth and Mars formed.

The Earth and Mars will have looked pretty much exactly like that -- volcanoes everywhere, evaporating lakes everywhere, minerals, hot springs, and then you see those mounds on the shore of those lakes? La Tierra y Marte habrán tenido un aspecto casi exactamente igual: volcanes en todas partes, evaporación de lagos en todas partes, minerales, aguas termales, ¿y luego ves esos montículos en la orilla de esos lagos? Those are built by the descendants of the first organisms that gave us the first fossil on Earth. Los construyen los descendientes de los primeros organismos que nos dieron el primer fósil en la Tierra.

8:31 But if we want to understand what's going on, we need to go a little further And the other thing about those sites is that exactly like on Mars three and a half billion years ago, the climate is changing very fast, and water and ice are disappearing. 8:31 Pero si queremos entender lo que está pasando, tenemos que ir un poco más lejos. Y la otra cosa acerca de esos sitios es que exactamente como en Marte hace tres mil quinientos millones de años, el clima está cambiando muy rápido y el agua Y el hielo está desapareciendo.

But we need to go back to that time when everything changed on Mars, and to do that, we need to go higher. Why is that? Because when you go higher, the atmosphere is getting thinner, it's getting more unstable, the temperature is getting cooler, and you have a lot more U.V. Porque cuando subes, la atmósfera se vuelve más delgada, se vuelve más inestable, la temperatura se vuelve más fría y tienes más UV radiation. Basically, you are getting to those conditions on Mars when everything changed.

9:09 So I was not promising anything about a leisurely trip on the time machine. 9:09 Así que no estaba prometiendo nada sobre un viaje pausado en la máquina del tiempo.

You are not going to be sitting in that time machine. You have to haul 1,000 pounds of equipment to the summit of this 20,000-foot volcano in the Andes here. Debe transportar 1,000 libras de equipo hasta la cima de este volcán de 20,000 pies en los Andes aquí. That's about 6,000 meters. And you also have to sleep on 42-degree slopes and really hope that there won't be any earthquake that night. But when we get to the summit, we actually find the lake we came for. Pero cuando llegamos a la cima, encontramos el lago por el que vinimos. At this altitude, this lake is experiencing exactly the same conditions as those on. Mars three and a half billion years ago. And now we have to change our voyage into an inner voyage inside that lake, and to do that, we have to remove our mountain gear and actually don suits and go for it. Y ahora tenemos que cambiar nuestro viaje en un viaje interior dentro de ese lago, y para hacer eso, tenemos que quitarnos el equipo de montaña y, en realidad, ponernos trajes e ir por él. И теперь мы должны изменить наше путешествие на внутреннее путешествие внутри этого озера, и для этого мы должны снять наше горное снаряжение, надеть костюмы и отправиться в путь. But at the time we enter that lake, at the very moment we enter that lake, we are stepping back three and a half billion years in the past of another planet, and then we are going to get the answer came for. Life is everywhere, absolutely everywhere. Everything you see in this picture is a living organism.Maybe not so the diver, but everything else. Все, что вы видите на этой картинке, — это живой организм. Может быть, не водолаз, а все остальное. But this picture is very deceiving. Pero esta foto es muy engañosa. Life is abundant in those lakes, but like in many places on Earth right now and due to climate change, there is a huge loss in biodiversity In the samples that we took back home, 36 percent of the bacteria in those lakes were composed of three species, and those three species are the ones that have survived so far. La vida es abundante en esos lagos, pero al igual que en muchos lugares de la Tierra en este momento y debido al cambio climático, hay una gran pérdida de biodiversidad. En las muestras que tomamos en casa, el 36 por ciento de las bacterias en esos lagos estaban compuestas de tres especies, y esas tres especies son las que han sobrevivido hasta ahora.

10:52 Here's another lake, right next to the first one.

The red color you see here is not due to minerals. It's actually due to the presence of a tiny algae. In this region, the U.V. radiation is really nasty. La radiación es realmente desagradable. Anywhere on Earth, 11 is considered to be extreme. Везде на Земле 11 считается экстремальным. During U.V storms there, the U.V. Index reaches 43. El índice llega a 43. SPF 30 is not going to do anything to you over there, and the water is so transparent in those lakes that the algae has nowhere to hide, really, and so they are developing their own sunscreen, and this is the red color you see. SPF 30 no te va a hacer nada allí, y el agua es tan transparente en esos lagos que las algas no tienen dónde esconderse realmente, y por eso están desarrollando su propio protector solar, y este es el color rojo que ves. But they can adapt only so far, and then when all the water is gone from the surface, microbes have only one solution left: They go underground. Pero solo pueden adaptarse hasta el momento, y luego, cuando toda el agua desaparece de la superficie, a los microbios solo les queda una solución: se ocultan. Но они могут адаптироваться только до поры до времени, а затем, когда вся вода уходит с поверхности, у микробов остается только одно решение: уйти под землю. And those microbes, the rocks you see in that slide here, well, they are actually living inside rocks and they are using the protection of the translucence of the rocks to get the good part of the U.V. Y esos microbios, las rocas que ves en esa diapositiva aquí, bueno, en realidad viven dentro de rocas y están usando la protección de la translucidez de las rocas para obtener la mejor parte de los rayos UV. and discard the part that could actually damage their DNA. y descartar la parte que realmente podría dañar su ADN. And this is why we are taking our rover to train them to search for life on Mars in these areas, because if there was life on Mars three and a half billion years ago, it had to use the same strategy to actually protect itself. Y es por eso que estamos tomando nuestro rover para entrenarlos para buscar vida en Marte en estas áreas, porque si había vida en Marte hace tres mil quinientos millones de años, tenía que usar la misma estrategia para protegerse realmente. Now, it is pretty obvious that going to extreme environments is helping us very much for the exploration of Mars and to prepare missions So far, it has helped us to understand the geology of Mars. It has helped to understand the past climate of Mars and its evolution, but also its habitability potential. Our most recent rover on Mars has discovered traces of organics. Ahora, es bastante obvio que ir a ambientes extremos nos está ayudando mucho para la exploración de Marte y para preparar misiones. Hasta ahora, nos ha ayudado a comprender la geología de Mar. Ha ayudado a comprender el clima pasado de Marte y su evolución, pero también su potencial de habitabilidad. Nuestro rover más reciente en Marte ha descubierto rastros de sustancias orgánicas. Yeah, there are organics at the surface of Mars. And it also discovered traces of methane. And we don't know yet if the methane in question is really from geology or biology. И мы еще не знаем, действительно ли рассматриваемый метан получен из геологии или биологии. Regardless, what we know is that because of the discovery, the hypothesis that there is still life present on Mars today remains a viable one. En cualquier caso, lo que sabemos es que debido al descubrimiento, la hipótesis de que todavía hay vida presente en Marte hoy en día sigue siendo viable.

12:59 So by now, I think I have convinced you that Mars is very special to us, but it would be a mistake to think that Mars is the only place in the solar system that is interesting to find potential microbial life.

And the reason is because Mars and the Earth could have a common root to their tree of life, but when you go beyond Mars, it's not that easy. Y la razón es porque Marte y la Tierra podrían tener una raíz común en su árbol de la vida, pero cuando vas más allá de Marte, no es tan fácil. Celestial mechanics is not making it so easy for an exchange of material between planets, and so if we were to discover life on those planets, it would be different from us La mecánica celeste no lo hace tan fácil para un intercambio de material entre planetas, por lo que si descubriéramos la vida en esos planetas, sería diferente a nosotros. Небесная механика не упрощает обмен веществ между планетами, и поэтому, если бы мы обнаружили жизнь на этих планетах, она бы отличалась от нашей.