×

We use cookies to help make LingQ better. By visiting the site, you agree to our cookie policy.


image

Big Think Science, The Most Beautiful Equation: How Wilczek Got His Nobel.

The Most Beautiful Equation: How Wilczek Got His Nobel.

TRANSCRIPT.

Frank Wilczek:

There are four fundamental forces of nature as we now understand it. There's gravity and electromagnetism, which are the classic forces, which were known already in prehistory and known in some form to the ancient Greeks, but which had mature theories in the case of gravity already in the 17th century with [Isaac] Newton and in the 19th century with [James] Maxwell and very beautiful descriptions and, in case of gravity, made even more beautiful with [Albert] Einstein's general theory of relativity in the early 20th century. But in the course of studying subatomic physics and what goes on at very, very short distances, people found they needed two additional forces — gravity and electromagnetism aren't enough. And the two additional forces are called the strong and weak forces. What I got the Nobel Prize for was figuring out the equations of the strong force. And equally important not just guessing the equations, but showing how you can test them and see that they were right. This was something I did as a graduate student. I was, of course, working very closely with my thesis advisor, a very, very gifted and powerful physicist named David Gross. What — so how did we go about doing it?

Well there were some — the experimental situation regarding the strong interaction was very confused, desperately confused. There was no theory even remotely worthy of standing beside Newton's theory of gravity or Einstein's or Maxwell's theory of electromagnetism. There were just a lot of rules of thumb and a lot of confusing data. What we did was focus on one particular phenomenon and try to understand just that. Putting off all other aspects of this confusing situation. The phenomena we tried to understand seemed so paradoxical, so crazy that we thought if we could understand that, we could understand anything basically. And also because it seemed so profound and fundamental. Actually David thought that we could prove that it couldn't — that you couldn't understand it within the standard framework of quantum mechanics and relativity. And that would be a very important result too because it would tell physicists they had to go back to the drawing board. This aspect that we were trying to explain was the fact that quarks, which were somewhat speculative, but a pretty clear indication of reality at that time — when they get close together they hardly interact at all. Or when they're moving at very high velocity relative to one another, high energy, again they don't interact very much at all.

But if you try to pull them apart a significant distance, which means, in this case, 10 to the minus 13 centimeters or more, or if they're moving slowly then they have very, very powerful forces. In fact you can't extract single quarks from matter. They always exist bound to one another inside protons and neutrons. So we needed a force which gets weaker at short distances and grows as the distance grows. That's a very paradoxical and difficult thing to imagine and make consistent with the other laws of physics that we know. Now there were powerful mathematical techniques for investigating that kind of question that had been developed for other purposes called renormalization group. So we were able to bring those techniques to bear and address this question. And they were very difficult calculations. It wasn't entirely clear that they were consistent, that you could actually do this kind of calculation in the kind of theory that was most beautiful, that we wanted to investigate. But we insisted on hoping that the most beautiful equations would be the right equations. And we found out that a very, very special class of theoretical constructions with tremendous amounts of symmetry could give you this behavior. So that was — I compare that to Archimedes saying that if you give me a lever and a place to stand, I can lift the world. Based on that kind of leverage given by the sort of basic principles and faith and symmetry and beauty plus this one fact about the forces getting weaker, we were led to quite a unique proposal for what the equations of the strong interaction should be.

And we could develop some consequences of those equations and then propose to experimenters that they go out and check whether these consequences are correct. Now it took several years afterwards before it became clear that those consequences we predicted were correct, but they are. And in subsequent years it's become more and more clear the theory has been used for a wide variety of applications now with great success. The kind of thing that in the early days was called testing quantum chromodynamics or testing asymptotic freedom is now called calculating backgrounds. So it's gone from being a glamorous exploration of new worlds to kind of taking care of the garbage. So I think you could look for more interesting things. But well although it sounds, in a way, it's kind of a step down. If I look at it in the big picture, it's glorious that you have a theory that was originally very speculative and just something that existed in our minds. And it's gone now to being an absolutely accepted and basic part of our understanding of nature and a very beautiful one.

The Most Beautiful Equation: How Wilczek Got His Nobel. Die schönste Gleichung: Wie Wilczek seinen Nobelpreis bekam. Η πιο όμορφη εξίσωση: Wilczek Got His Nobel. The Most Beautiful Equation: How Wilczek Got His Nobel. La ecuación más bella: Cómo Wilczek consiguió su Nobel. La plus belle équation : Comment Wilczek a obtenu son Nobel. 最も美しい方程式」:ウィルチェックはいかにしてノーベル賞を手に入れたか。 가장 아름다운 방정식: 빌첵은 어떻게 노벨상을 받았는가? Najpiękniejsze równanie: Jak Wilczek dostał Nobla. A mais bela equação: Como Wilczek conseguiu o seu Nobel. Самое красивое уравнение: Как Вильчек получил Нобелевскую премию. En Güzel Denklem: Wilczek Nobel'ini Nasıl Aldı? Найкрасивіше рівняння: Як Вільчек отримав Нобелівську премію. 最美丽的方程:威尔切克如何获得诺贝尔奖。 最美麗的方程式:威爾切克如何獲得諾貝爾獎。

TRANSCRIPT. TRANSCRIPTION.

Frank Wilczek:

There are four fundamental forces of nature as we now understand it. There are four fundamental forces of nature as we now understand it. Existem quatro forças fundamentais da natureza como as entendemos agora. Существуют четыре фундаментальные силы природы в нашем современном понимании. Şu anda anladığımız şekliyle doğanın dört temel gücü vardır. There’s gravity and electromagnetism, which are the classic forces, which were known already in prehistory and known in some form to the ancient Greeks, but which had mature theories in the case of gravity already in the 17th century with [Isaac] Newton and in the 19th century with [James] Maxwell and very beautiful descriptions and, in case of gravity, made even more beautiful with [Albert] Einstein’s general theory of relativity in the early 20th century. Il y a la gravité et l'électromagnétisme, qui sont les forces classiques, qui étaient déjà connues dans la préhistoire et connues sous une certaine forme par les anciens Grecs, mais qui avaient des théories mûres dans le cas de la gravité déjà au 17ème siècle avec [Isaac] Newton et dans le 19ème siècle avec [James] Maxwell et de très belles descriptions et, en cas de gravité, rendue encore plus belle avec la théorie de la relativité générale d'[Albert] Einstein au début du 20ème siècle. Há a gravidade e o eletromagnetismo, que são as forças clássicas, já conhecidas na pré-história e conhecidas de alguma forma pelos gregos antigos, mas que já tinham teorias maduras no caso da gravidade no século XVII com [Isaac] Newton e no século XVII. Século XIX com [James] Maxwell e descrições muito bonitas e, em caso de gravidade, ficaram ainda mais bonitas com a teoria geral da relatividade de Albert Einstein no início do século XX. Классическими силами являются гравитация и электромагнетизм, которые были известны еще в доисторические времена и в той или иной форме древним грекам, но которые имели зрелые теории в случае гравитации уже в XVII веке с [Исааком] Ньютоном и в XIX веке с [Джеймсом] Максвеллом и очень красивые описания, а в случае гравитации еще более красивые с общей теорией относительности [Альберта] Эйнштейна в начале XX века. But in the course of studying subatomic physics and what goes on at very, very short distances, people found they needed two additional forces — gravity and electromagnetism aren’t enough. Mas no decorrer do estudo da física subatômica e do que acontece em distâncias muito curtas, as pessoas descobriram que precisavam de duas forças adicionais - a gravidade e o eletromagnetismo não são suficientes. Но в ходе изучения субатомной физики и того, что происходит на очень-очень малых расстояниях, люди обнаружили, что им нужны две дополнительные силы - гравитации и электромагнетизма недостаточно. And the two additional forces are called the strong and weak forces. Y las dos fuerzas adicionales se denominan fuerza fuerte y fuerza débil. А две дополнительные силы называются сильной и слабой. What I got the Nobel Prize for was figuring out the equations of the strong force. Por lo que me dieron el Nobel fue por descifrar las ecuaciones de la fuerza fuerte. Нобелевскую премию я получил за то, что выяснил уравнения сильных сил. And equally important not just guessing the equations, but showing how you can test them and see that they were right. E igual de importante es no limitarse a adivinar las ecuaciones, sino mostrar cómo se pueden poner a prueba y comprobar que eran correctas. This was something I did as a graduate student. Esto fue algo que hice como estudiante de posgrado. Это было то, что я сделал, будучи аспирантом. I was, of course, working very closely with my thesis advisor, a very, very gifted and powerful physicist named David Gross. Por supuesto, trabajaba muy estrechamente con mi director de tesis, un físico muy, muy dotado y poderoso llamado David Gross. What — so how did we go about doing it? Что - и как мы это сделали?

Well there were some — the experimental situation regarding the strong interaction was very confused, desperately confused. Ну, были некоторые — экспериментальная ситуация с сильным взаимодействием была очень запутанной, отчаянно запутанной. There was no theory even remotely worthy of standing beside Newton’s theory of gravity or Einstein’s or Maxwell’s theory of electromagnetism. Не было никакой теории, даже отдаленно достойной стоять рядом с теорией гравитации Ньютона или теорией электромагнетизма Эйнштейна или Максвелла. There were just a lot of rules of thumb and a lot of confusing data. Было просто много эмпирических правил и много запутанных данных. What we did was focus on one particular phenomenon and try to understand just that. Мы сосредоточились на одном конкретном явлении и попытались понять именно его. Putting off all other aspects of this confusing situation. Откладывание всех других аспектов этой запутанной ситуации. The phenomena we tried to understand seemed so paradoxical, so crazy that we thought if we could understand that, we could understand anything basically. Явления, которые мы пытались понять, казались такими парадоксальными, такими безумными, что мы думали, что если бы мы могли понять это, мы могли бы понять что угодно в принципе. And also because it seemed so profound and fundamental. Actually David thought that we could prove that it couldn’t — that you couldn’t understand it within the standard framework of quantum mechanics and relativity. На самом деле Дэвид думал, что мы можем доказать, что это невозможно — что вы не можете понять это в стандартных рамках квантовой механики и теории относительности. And that would be a very important result too because it would tell physicists they had to go back to the drawing board. И это тоже был бы очень важный результат, потому что он сказал бы физикам, что им нужно вернуться к чертежной доске. This aspect that we were trying to explain was the fact that quarks, which were somewhat speculative, but a pretty clear indication of reality at that time — when they get close together they hardly interact at all. Этот аспект, который мы пытались объяснить, заключался в том, что кварки, которые в то время были несколько умозрительным, но довольно четким свидетельством реальности, - когда они сближаются, то практически не взаимодействуют друг с другом. Or when they’re moving at very high velocity relative to one another, high energy, again they don’t interact very much at all. Или, когда они движутся с очень большой скоростью друг относительно друга, с большой энергией, они опять-таки не очень сильно взаимодействуют.

But if you try to pull them apart a significant distance, which means, in this case, 10 to the minus 13 centimeters or more, or if they’re moving slowly then they have very, very powerful forces. Но если попытаться раздвинуть их на значительное расстояние, что в данном случае означает от 10 до минус 13 сантиметров и более, или если они движутся медленно, то они обладают очень, очень мощными силами. In fact you can’t extract single quarks from matter. На самом деле одиночные кварки из материи извлечь невозможно. They always exist bound to one another inside protons and neutrons. Они всегда существуют связанными друг с другом внутри протонов и нейтронов. So we needed a force which gets weaker at short distances and grows as the distance grows. Поэтому нам нужна сила, которая ослабевает на малых расстояниях и возрастает с увеличением расстояния. That’s a very paradoxical and difficult thing to imagine and make consistent with the other laws of physics that we know. Это очень парадоксальная и трудная вещь, которую можно представить и сделать совместимой с другими известными нам законами физики. Now there were powerful mathematical techniques for investigating that kind of question that had been developed for other purposes called renormalization group. Теперь существовали мощные математические методы для исследования такого рода вопросов, которые были разработаны для других целей, называемых ренормализационной группой. So we were able to bring those techniques to bear and address this question. Таким образом, мы смогли применить эти методы и решить этот вопрос. And they were very difficult calculations. It wasn’t entirely clear that they were consistent, that you could actually do this kind of calculation in the kind of theory that was most beautiful, that we wanted to investigate. Было не совсем понятно, что они непротиворечивы, что можно провести такие расчеты в той теории, которая была наиболее красивой, которую мы хотели исследовать. But we insisted on hoping that the most beautiful equations would be the right equations. Но мы продолжали надеяться, что самые красивые уравнения окажутся правильными уравнениями. And we found out that a very, very special class of theoretical constructions with tremendous amounts of symmetry could give you this behavior. И мы обнаружили, что такое поведение может дать очень, очень особый класс теоретических конструкций с огромной степенью симметрии. So that was — I compare that to Archimedes saying that if you give me a lever and a place to stand, I can lift the world. Итак, это было — я сравниваю это со словами Архимеда, что если вы дадите мне рычаг и точку опоры, я смогу поднять мир. Based on that kind of leverage given by the sort of basic principles and faith and symmetry and beauty plus this one fact about the forces getting weaker, we were led to quite a unique proposal for what the equations of the strong interaction should be. Основываясь на такого рода рычагах, предоставляемых своего рода базовыми принципами, верой, симметрией и красотой, а также одним этим фактом об ослаблении сил, мы пришли к совершенно уникальному предположению о том, какими должны быть уравнения сильного взаимодействия.

And we could develop some consequences of those equations and then propose to experimenters that they go out and check whether these consequences are correct. И мы могли бы вывести некоторые следствия из этих уравнений, а затем предложить экспериментаторам выйти и проверить, верны ли эти следствия. Now it took several years afterwards before it became clear that those consequences we predicted were correct, but they are. Теперь понадобилось несколько лет, прежде чем стало ясно, что те последствия, которые мы предсказывали, были правильными, но они были. And in subsequent years it’s become more and more clear the theory has been used for a wide variety of applications now with great success. И в последующие годы становилось все более и более очевидным, что теория с большим успехом использовалась для самых разных приложений. The kind of thing that in the early days was called testing quantum chromodynamics or testing asymptotic freedom is now called calculating backgrounds. То, что раньше называлось проверкой квантовой хромодинамики или проверкой асимптотической свободы, теперь называется вычислением фона. So it’s gone from being a glamorous exploration of new worlds to kind of taking care of the garbage. Так что это превратилось из гламурного исследования новых миров в своего рода заботу о мусоре. So I think you could look for more interesting things. Так что я думаю, что вы могли бы поискать более интересные вещи. But well although it sounds, in a way, it’s kind of a step down. Но что ж, хотя это и звучит, в каком-то смысле это своего рода шаг вниз. If I look at it in the big picture, it’s glorious that you have a theory that was originally very speculative and just something that existed in our minds. Если я смотрю на это в целом, то прекрасно, что у вас есть теория, которая изначально была очень спекулятивной и просто существовала в наших умах. And it’s gone now to being an absolutely accepted and basic part of our understanding of nature and a very beautiful one. И теперь это стало абсолютно принятой и основной частью нашего понимания природы и очень красивой.