×

We use cookies to help make LingQ better. By visiting the site, you agree to our cookie policy.


image

Why are all the planets on the same orbital plane?

Why are all the planets on the same orbital plane?

When we imagine the solar system, we tend to have this concept of a flat disk with lots of rings indicating the orbital motion of the planets.

Given that we've learned this since we were little, we kind of take it for granted that all the planets are on the same orbital plane.

Not only that, but they all orbit the Sun in the same direction.

But have you considered, why?

Is it a massive coincidence?

Or did something happen to make it this way, and if there was a process, do we have evidence of it elsewhere?

As you can probably guess, it was not a massive coincidence, because not only do we observe planets orbiting the Sun along a plane, regular moons do it too.

All the gas giants have regular moons that also orbit along the planet's plane, and all in the same direction too. Saturn's rings orbit Saturn along the same plane as Saturn's regular moons, in beautiful clockwork fashion.

So, we can see there are plenty of examples, but how and why did this all happen?

Let's go back billions of years ago to before the solar system was formed.

Deep in the heart of a HII nebula, or a stellar nursery, gas and dust were suspended in place, each particle resisting the other's gravitational pull with an internal repelling pressure.

Until one day, an outside push of energy, like a supernova shockwave, jolted the gas and dust inside the nebula, disrupting the internal pressure, causing the particles to collide and clump together.

Soon, these clumps would attach to other clumps, their mass and gravity increasing with every particle becoming attached.

Within a few thousand years, impacts from the infalling material began to get more energetic, causing the object in the centre to heat up.

More material from the nebula cloud was sucked into the object as its mass and gravity increased, forming what is known as a protostar, or a very young star that hasn't started nuclear fusion in its core yet.

At first the infalling material around the protostar would have been pulled in from all directions, causing a very chaotic environment around the protostar.

Collisions between the particles would have happened on a regular basis, and through doing so, their angular momentum would have been cancelled out.

However, these infalling particles would not have approached uniformly, as the collapsing nebula cloud has a total angular momentum.

So what ends up happening is that while particles approached from all different directions, most of their momentum would have been cancelled out by particles going in other directions, until all you are left with is the direction most particles were going.

The best visualisation I can give you to help you wrap your head around this concept is this.

This is a great video from Dan Burns, who uses a sheet of lycra to represent spacetime.

The ball in the middle, with its large mass, is warping spacetime and creating gravity, which is just like what gravity does in three-dimensional space in the universe.

Dan throws balls in both directions around this central object, and the balls orbit until they collide with another ball going to opposite direction, cancelling their momentum out, and what you are left with are just the balls that didn't collide that are all going in the same direction.

Now, friction from the lycra wouldn't happen in space, so you can imagine particles continuing to orbit unlike the balls that slow down eventually on the lycra.

Also, this is kind of a 2D representation of what happens on a 3D plane in a 4D universe, so you'll need to imagine these particles going along another axis too.

Instead of just the two directions these particles approach from, around a protostar, they will be approaching from all directions, colliding and cancelling each other out until only the predominant direction remains, creating a protoplanetary disk.

As material falls into the protostar, the angle of the impacts causes the protostar to begin to rotate in the same direction the disk is spinning.

As less matter falls in towards the protostar and instead begins to stay in orbit around it, material begins to clump again.

If enough material clumps into one, you may end up with another star, making it a binary or even multi-star system.

Otherwise, these clumps will eventually coalesce into planets.

Around these planets, a similar disk to a protoplanetary disk forms, again causing the planet to rotate in the same direction as the disk, and the material in the disk eventually forming moons.

This clumping of material can be observed even today, with the planet that has a mighty disk of its own, Saturn.

Cassini, during its mission, was able to spot tiny moonlets forming within Saturn's rings, as material clumps together from various gravitational interactions.

Some of these moonlets fell apart soon after, as I'm sure also happened in our early solar system.

But some lasted until the end of Cassini's mission, and perhaps they will eventually form very tiny moons one day, like some of the other shepherd moons that have carved paths in the rings themselves.

Now, the orbital plane of the solar system isn't perfectly flat, some planets have variations of a few degrees, but it definitely is a pattern.

It's almost beautiful how in nature, you can have something so chaotic that will eventually form something rather calm and orderly.

As material in the solar system like asteroids and comets continue to find homes on the planets by impacting them, less and less collisions will happen.

We can already see a vast reduction in the amount of collisions that have taken place by measuring the age of craters on exposed celestial objects, like the moons and others.

From these clues, we can see that all the planets were heavily bombarded from asteroids and planetesimals during this chaotic beginning, the amount of collisions gradually reducing as more material got in order, until what we see is the solar system we have today.

This is a type of natural phenomena which falls under something called emergent structures through self-organisation.

Other self-organising emergent structures are strongly comparable to this process, for instance the development of hurricanes.

Emergent structures are basically where randomness can give rise to complex and deeply attractive, orderly structures.

We see self-organising take place in space with orbital planes in planetary systems, solar systems, and even in galaxies.

As a side note, we also see it in star and planet formation, and to a large extent, the Big Bang.

Given all this evidence, we have to assume that similar processes formed other star systems, and we have just about been able to observe massive planets orbiting other stars along similar planes too.

So, there we have it!

Why planets are all on the same orbital plane.

Thanks for watching!

Want to help pick the next Astrum Answers?

Check the links in the description to become a Patron today!

Did you enjoy the video?

Then please subscribe and share the video, it really goes a long way to supporting this channel.

All the best!

And see you next time.


Why are all the planets on the same orbital plane?

When we imagine the solar system, we tend to have this concept of a flat disk with lots of rings indicating the orbital motion of the planets. Kiedy wyobrażamy sobie Układ Słoneczny, mamy tendencję do wyobrażania sobie płaskiego dysku z wieloma pierścieniami wskazującymi na orbitalny ruch planet.

Given that we've learned this since we were little, we kind of take it for granted that all the planets are on the same orbital plane. Biorąc pod uwagę, że nauczyliśmy się tego, odkąd byliśmy mali, przyjmujemy za pewnik, że wszystkie planety znajdują się na tej samej płaszczyźnie orbity.

Not only that, but they all orbit the Sun in the same direction. Nie tylko to, ale wszystkie krążą wokół Słońca w tym samym kierunku.

But have you considered, why? Ale czy zastanawiałeś się, dlaczego?

Is it a massive coincidence? Czy to ogromny zbieg okoliczności?

Or did something happen to make it this way, and if there was a process, do we have evidence of it elsewhere? A może stało się coś, co sprawiło, że tak się stało, a jeśli był jakiś proces, czy mamy na to dowody gdzie indziej?

As you can probably guess, it was not a massive coincidence, because not only do we observe planets orbiting the Sun along a plane, regular moons do it too. Jak się pewnie domyślasz, nie był to ogromny zbieg okoliczności, ponieważ nie tylko obserwujemy planety krążące wokół Słońca po płaszczyźnie, robią to również zwykłe księżyce.

All the gas giants have regular moons that also orbit along the planet's plane, and  all in the same direction too. Wszystkie gazowe giganty mają regularne księżyce, które również krążą po płaszczyźnie planety i wszystkie również w tym samym kierunku. Saturn's rings orbit Saturn along the same plane as Saturn's regular moons, in beautiful clockwork fashion. Pierścienie Saturna orbitują wokół Saturna wzdłuż tej samej płaszczyzny co regularne księżyce Saturna, w pięknym mechanizmie zegarowym.

So, we can see there are plenty of examples, but how and why did this all happen? Widzimy więc, że istnieje wiele przykładów, ale jak i dlaczego to wszystko się stało?

Let's go back billions of years ago to before the solar system was formed. Cofnijmy się miliardy lat temu, zanim powstał Układ Słoneczny.

Deep in the heart of a HII nebula, or a stellar nursery, gas and dust were suspended in place, each particle resisting the other's gravitational pull with an internal repelling pressure. Głęboko w sercu mgławicy HII, czyli gwiezdnego żłobka, gaz i pył były zawieszone na miejscu, a każda cząsteczka opierała się grawitacyjnemu przyciąganiu drugiej, dzięki wewnętrznemu ciśnieniu odpychania.

Until one day, an outside push of energy, like a supernova shockwave, jolted the gas and dust inside the nebula, disrupting the internal pressure, causing the particles to collide and clump together. Aż pewnego dnia zewnętrzny impuls energii, jak fala uderzeniowa supernowej, wstrząsnął gazem i pyłem wewnątrz mgławicy, zaburzając ciśnienie wewnętrzne, powodując zderzenie i zlepianie się cząstek.

Soon, these clumps would attach to other clumps, their mass and gravity increasing with every particle becoming attached. Wkrótce te skupiska przyczepiły się do innych skupisk, a ich masa i grawitacja wzrastały wraz z przyłączaniem się każdej cząstki.

Within a few thousand years, impacts from the infalling material began to get more energetic, causing the object in the centre to heat up. W ciągu kilku tysięcy lat uderzenia spadającego materiału zaczęły nabierać większej energii, powodując nagrzewanie się obiektu w centrum.

More material from the nebula cloud was sucked into the object as its mass and gravity increased, forming what is known as a protostar, or a very young star that hasn't started nuclear fusion in its core yet. Więcej materiału z chmury mgławicy zostało zassanych do obiektu, gdy jego masa i grawitacja wzrosły, tworząc tak zwaną protogwiazdę lub bardzo młodą gwiazdę, która jeszcze nie rozpoczęła syntezy jądrowej w swoim jądrze.

At first the infalling material around the protostar would have been pulled in from all directions, causing a very chaotic environment around the protostar. Początkowo opadający materiał wokół protogwiazdy zostałby wciągnięty ze wszystkich kierunków, powodując bardzo chaotyczne środowisko wokół protogwiazdy.

Collisions between the particles would have happened on a regular basis, and through doing so, their angular momentum would have been cancelled out. Zderzenia między cząstkami zdarzałyby się regularnie, a dzięki temu ich moment pędu zostałby wyeliminowany.

However, these infalling particles would not have approached uniformly, as the collapsing nebula cloud has a total angular momentum. Jednak te spadające cząstki nie zbliżyłyby się równomiernie, ponieważ zapadająca się chmura mgławicy ma całkowity moment pędu.

So what ends up happening is that while particles approached from all different directions, most of their momentum would have been cancelled out by particles going in other directions, until all you are left with is the direction most particles were going. Ostatecznie dzieje się tak, że podczas gdy cząstki zbliżały się z różnych kierunków, większość ich pędu została zniwelowana przez cząstki poruszające się w innych kierunkach, aż pozostaje ci tylko kierunek, w którym zmierza większość cząstek.

The best visualisation I can give you to help you wrap your head around this concept is this. Najlepsza wizualizacja, jaką mogę ci dać, aby pomóc ci zrozumieć tę koncepcję, jest taka.

This is a great video from Dan Burns, who uses a sheet of lycra to represent spacetime.

The ball in the middle, with its large mass, is warping spacetime and creating gravity, which is just like what gravity does in three-dimensional space in the universe.

Dan throws balls in both directions around this central object, and the balls orbit until they collide with another ball going to opposite direction, cancelling their momentum out, and what you are left with are just the balls that didn't collide that are all going in the same direction.

Now, friction from the lycra wouldn't happen in space, so you can imagine particles continuing to orbit unlike the balls that slow down eventually on the lycra.

Also, this is kind of a 2D representation of what happens on a 3D plane in a 4D universe, so you'll need to imagine these particles going along another axis too.

Instead of just the two directions these particles approach from, around a protostar, they will be approaching from all directions, colliding and cancelling each other out until only the predominant direction remains, creating a protoplanetary disk. Zamiast tylko dwóch kierunków, z których te cząstki zbliżają się, wokół protogwiazdy, będą zbliżać się ze wszystkich kierunków, zderzając się i znosząc się nawzajem, aż pozostanie tylko dominujący kierunek, tworząc dysk protoplanetarny.

As material falls into the protostar, the angle of the impacts causes the protostar to begin to rotate in the same direction the disk is spinning. Gdy materiał wpada do protogwiazdy, kąt uderzenia powoduje, że protogwiazda zaczyna się obracać w tym samym kierunku, w którym obraca się dysk.

As less matter falls in towards the protostar and instead begins to stay in orbit around it, material begins to clump again. Ponieważ mniej materii spada w kierunku protogwiazdy i zamiast tego zaczyna pozostawać na orbicie wokół niej, materiał zaczyna ponownie się zlepiać.

If enough material clumps into one, you may end up with another star, making it a binary or even multi-star system. Jeśli wystarczająca ilość materiału zlepi się w jedną, możesz skończyć z inną gwiazdą, czyniąc ją układem podwójnym lub nawet wielogwiazdowym.

Otherwise, these clumps will eventually coalesce into planets. W przeciwnym razie te skupiska ostatecznie połączą się w planety.

Around these planets, a similar disk to a protoplanetary disk forms, again causing the planet to rotate in the same direction as the disk, and the material in the disk eventually forming moons. Wokół tych planet tworzy się dysk podobny do dysku protoplanetarnego, ponownie powodując rotację planety w tym samym kierunku co dysk, a materiał w dysku ostatecznie tworzy księżyce.

This clumping of material can be observed even today, with the planet that has a mighty disk of its own, Saturn. To zlepianie się materii można zaobserwować nawet dzisiaj, na planecie, która ma własny potężny dysk, Saturn.

Cassini, during its mission, was able to spot tiny moonlets forming within Saturn's rings, as material clumps together from various gravitational interactions.

Some of these moonlets fell apart soon after, as I'm sure also happened in our early solar system. Niektóre z tych księżyców rozpadły się wkrótce potem, jak jestem pewien, że zdarzyło się to również w naszym wczesnym Układzie Słonecznym.

But some lasted until the end of Cassini's mission, and perhaps they will eventually form very tiny moons one day, like some of the other shepherd moons that have carved paths in the rings themselves. Ale niektóre przetrwały do końca misji Cassini i być może pewnego dnia uformują bardzo małe księżyce, jak niektóre inne księżyce pasterskie, które same wyrzeźbiły ścieżki w pierścieniach.

Now, the orbital plane of the solar system isn't perfectly flat, some planets have variations of a few degrees, but it definitely is a pattern. Teraz płaszczyzna orbity Układu Słonecznego nie jest idealnie płaska, niektóre planety mają odchylenia o kilka stopni, ale na pewno jest to wzór.

It's almost beautiful how in nature, you can have something so chaotic that will eventually form something rather calm and orderly. To prawie piękne, jak w naturze można mieć coś tak chaotycznego, że ostatecznie utworzy coś raczej spokojnego i uporządkowanego.

As material in the solar system like asteroids and comets continue to find homes on the planets by impacting them, less and less collisions will happen. Ponieważ materiał w Układzie Słonecznym, taki jak asteroidy i komety, nadal znajduje domy na planetach, uderzając w nie, zderzeń będzie się zdarzać coraz mniej.

We can already see a vast reduction in the amount of collisions that have taken place by measuring the age of craters on exposed celestial objects, like the moons and others. Już teraz możemy zaobserwować znaczne zmniejszenie liczby zderzeń, które miały miejsce, mierząc wiek kraterów na odsłoniętych obiektach niebieskich, takich jak księżyce i inne.

From these clues, we can see that all the planets were heavily bombarded from asteroids and planetesimals during this chaotic beginning, the amount of collisions gradually reducing as more material got in order, until what we see is the solar system we have today. Na podstawie tych wskazówek możemy zobaczyć, że wszystkie planety zostały silnie zbombardowane przez asteroidy i planetozymale podczas tego chaotycznego początku, a liczba zderzeń stopniowo się zmniejszała w miarę uporządkowania większej ilości materiału, aż do momentu, w którym widzimy Układ Słoneczny, który mamy dzisiaj.

This is a type of natural phenomena which falls under something called emergent structures through self-organisation. Jest to rodzaj naturalnych zjawisk, które podlegają tak zwanym strukturom wyłaniającym się poprzez samoorganizację.

Other self-organising emergent structures are strongly comparable to this process, for instance the development of hurricanes. Inne samoorganizujące się powstające struktury są silnie porównywalne z tym procesem, na przykład rozwój huraganów.

Emergent structures are basically where randomness can give rise to complex and deeply attractive, orderly structures. Powstające struktury są w zasadzie tam, gdzie losowość może prowadzić do złożonych i głęboko atrakcyjnych, uporządkowanych struktur.

We see self-organising take place in space with orbital planes in planetary systems, solar systems, and even in galaxies. Widzimy, że samoorganizacja zachodzi w kosmosie z płaszczyznami orbitalnymi w układach planetarnych, układach słonecznych, a nawet w galaktykach.

As a side note, we also see it in star and planet formation, and to a large extent, the Big Bang. Na marginesie, widzimy to również w formowaniu się gwiazd i planet oraz w dużym stopniu w Wielkim Wybuchu.

Given all this evidence, we have to assume that similar processes formed other star systems, and we have just about been able to observe massive planets orbiting other stars along similar planes too. Biorąc pod uwagę wszystkie te dowody, musimy założyć, że podobne procesy utworzyły inne systemy gwiezdne i prawie byliśmy w stanie obserwować masywne planety krążące wokół innych gwiazd również po podobnych płaszczyznach.

So, there we have it!

Why planets are all on the same orbital plane.

Thanks for watching!

Want to help pick the next Astrum Answers?

Check the links in the description to become a Patron today!

Did you enjoy the video?

Then please subscribe and share the video, it really goes a long way to supporting this channel.

All the best!

And see you next time.